SickKids researchers discover precise molecular mechanisms that can influence memory

Zhengping Jia
Zhengping Jia

Learning and memory are crucial parts of human cognition, yet the biological processes that govern how we learn and store different types of memories are poorly understood. Although a cellular process called synaptic plasticity has long been thought to contribute to learning and memory, many of the neural mechanisms behind synaptic plasticity have remained unclear.

In a recently published study entitled The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning, researchers from The Hospital for Sick Children (SickKids) have discovered the precise neuronal mechanisms that can regulate synaptic plasticity to influence distinct forms of memory. We sat down with Dr. Zhengping Jia, a Senior Scientist in the Neurosciences & Mental Health Program at SickKids who led the study, published online in Nature Neuroscience. Continue reading

Canadian Researchers Reveal How Certain Chronic Diseases Can Worsen The Effects of Multiple Sclerosis

Ruth Ann Marrie
Ruth Ann Marrie

Multiple Sclerosis is known as a progressive disease in which symptoms worsen over time. But for some 85% of those who suffer, the first stages of the illness come in waves. The individual may feel perfectly well some days while others are marked with worsening or new symptoms.

Officially this condition is known as relapsing remitting multiple sclerosis (MS) and it is the focus of a large Canadian conglomerate known as the CIHR Team in Epidemiology and Impact of Comorbidity on Multiple Sclerosis, or ECoMS. As the name implies, the group aims to determine how co-existing chronic diseases – comorbidities – affect those suffering with MS. Last week, representatives of the team, headed by Dr. Ruth Ann Marrie at the University of Manitoba and Director of Manitoba’s MS Clinic at Health Sciences Centre Winnipeg, revealed their findings in the journal, Neurology. Continue reading

Researchers at SickKids identify an anti-cancer drug as a candidate to inhibit the degeneration of neurons.

Dr. David Kaplan
Dr. David Kaplan

Nerve injuries and neurodegenerative diseases such as Parkinson’s disease, amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Multiple Sclerosis (MS) and glaucoma share some characteristics, one of which is the degeneration of a part of neurons called the axon.  Axons are long extensions that branch out of the cell body to allow neurons to connect to other cells, including other neurons, to transmit signals.   A team led by SickKids scientist David Kaplan with Freda Miller and their trainees Konstantin Feinberg and Adelaida Kolaj has recently identified a drug, called fortetinib, that protects axons from degeneration in multiple conditions. It may turn out to be a clinically useful therapeutic drug. Continue reading

uOBMRI researchers open new doors for Parkinson’s drug therapies

David Park
David Park

Dr. David Park has spent countless hours exploring how deactivating a gene impacts the way a cell handles the very nutrients it needs for its own survival and proper function. To Park and his research team, it’s an essential piece of the puzzle that is Parkinson’s disease.

Parkinson’s affects 10 million people worldwide, causing a degeneration of the body’s nerve cells and a progressive loss of motor control. Continue reading

Neuroscientists link memory fundamentals with Alzheimer’s disease in promising study

Paul Frankland
Paul Frankland

Deteriorating memory function is a scary, life changing symptom associated with Alzheimer’s disease (AD) – a neurodegenerative disease exhibited by cognitive declines such as speech, behaviour and thinking processes. Even though it is the most common form of dementia and the prevalence is continuously rising, there is no cure. While there are medications to help with symptoms, the disease ultimately results in mortality. Continue reading

Child abuse affects brain wiring

Gustavo Turecki
Gustavo Turecki

Researchers from the McGill Group for Suicide Studies, based at the Douglas Mental Health University Institute and McGill University’s Department of Psychiatry, have just published research in the American Journal of Psychiatry that suggests that the long-lasting effects of traumatic childhood experiences, like severe abuse, may be due to an impaired structure and functioning of cells in the anterior cingulate cortex. This is a part of the brain which plays an important role in the regulation of emotions and mood. Continue reading

Is cardiovascular health the key to protecting the brain against dementia?

New research from the Djavad Mowafaghian Centre for Brain Health asks: Can “good” cholesterol protect against age-related cognitive decline? A trio of papers from researchers in Dr. Cheryl Wellington’s lab illustrate new context for the role of high-density lipoproteins (HDL) – commonly described as good cholesterol – in protecting the brain against disease. Continue reading

The two faces of depression

Benoit Labonté
Benoit Labonté

Major depression affects the expression of genes in the brains of women and men differently

Major depression presents itself quite differently in women and men, and this dimorphism would have genomic foundations, suggests a study that has just been published in Nature Medicine. According to the first author of this study, Benoit Labonté of the CERVO Brain Research Centre at Université Laval, these differences are such that the search for new antidepressants would benefit from targeting mechanisms specific to each sex. Continue reading

University of British Columbia Researchers Take A Closer Look At The Potential For Stem Cell Therapy After Spinal Cord Injury

Journal of Neuroscience cover

Injury of the spinal cord is a traumatic and life-changing event that affects over three million people worldwide. Over the last decade, researchers have been examining ways to help repair injured individuals through the use of stem cell transplantation. Significant progress has been made in this area yet many unanswered questions remain. For the laboratory of Dr. Wolfram Tetzlaff at the University of British Columbia, these gaps need to be filled to ensure successful treatments in the future. Continue reading

Pinpointing the origins of autism

Abnormalities shown to first appear in brain networks involved in sensory processing

The origins of autism remain mysterious. What areas of the brain are involved, and when do the first signs appear? New findings published in Biological Psychiatry bring us closer to understanding the pathology of autism, and the point at which it begins to take shape in the human brain. Such knowledge will allow earlier interventions in the future and better outcomes for autistic children.

Continue reading