Huai-Ying Huang of London, Ontario, Canada wins third place in the 2018 International Brain Bee Championship

Huai-Ying Huang

Huai-Ying Huang

Congratulations to 17 year-old Huai-Ying Huang of Sir Frederick Banting Secondary School in London, Ontario, Canada, on winning third place in the 2018 International Brain Bee Championship in Berlin, held July 7-11, 2018! .

Huai-Ying Huang loves playing the piano and oboe, and is starting at McGill University to pursue her dream of becoming a neurologist or a neurosurgeon, not only because she has passion for neuroscience, but because she wants to be able to help people affected by neurological disorders.

Slowing down glaucoma and other neurodegenerative diseases

Jessica Agostinone and Adriana Di Polo

Jessica Agostinone and Adriana Di Polo

Major discovery at the CRCHUM: reestablishing communication between neurons to improve vision.

Neuroscience researcher Dr. Adriana Di Polo, Ph. D., and her team at the University of Montreal Hospital Research Centre (CRCHUM) in Canada, have made a major breakthrough in the treatment of glaucoma. Their findings could also be applicable to other neurodegenerative conditions, notably Alzheimer’s disease. The results have just been published in the prestigious British scientific journal Brain, an Oxford University Press publication.

Our earliest memories may be forgotten but not lost

Paul Frankland

Paul Frankland

TORONTO – When asked to think of their earliest memory, most would think of a time when they were four or five years old. The period from birth to kindergarten appears to be forgotten. Since the late 1800s, this phenomenon has been called “infantile amnesia” and debate on why we can’t remember our earliest years has persisted to this day: Are these memories gone or are they just difficult to access?

A new study from The Hospital for Sick Children (SickKids) shows these early memories in mice are not missing and can be brought back by directly stimulating different clusters of neurons that represent individual infantile memories in the brain. The results, published in Current Biology, provide deeper insight into the complexities of forgetting.

Mechanisms underlying efficient coding of natural stimuli revealed

Maurice Chacron

Maurice Chacron

Researchers at McGill University have discovered that feedback pathways enable sensory neurons to respond to weak sensory input in order to lead to perception.
Published in PLoS Biology, their study shows that feedback pathways, which are seen ubiquitously across sensory systems and account for 90-95% of input onto sensory neurons, are necessary to generate neural responses and perception of weak sensory input that would otherwise not be detected by the organism. These results thus reveal an elegant mechanism by which the brain processes sensory information, which is critical for understanding brain function at large.

Understanding the origin of Alzheimer’s, looking for a cure

Gilbert BernierResearchers at Université de Montréal look at the promising role played by the BMI1 gene, which could someday help mitigate or even reverse the disease.

After a decade of work, a team led by Hôpital Maisonneuve-Rosemont researcher and Université de Montréal associate professor Dr. Gilbert Bernier has shed promising light on the origin of the most common and prevalent form of Alzheimer’s disease, hoping to someday help mitigate or even reverse the progress of the disease. The team’s results are published in the prestigious scientific journal Cell Reports.

As harmful as dehydration?

Charles Bourque

Charles Bourque

Researchers uncover mechanisms of overhydration leading to hyponatremia – a common condition in patients after a traumatic brain injury

We are all familiar with the drawbacks of dehydration, but we rarely hear about the harmful effects of overhydration. It is known that excess fluid accumulation can lead to dangerously low sodium levels in the blood or hyponatremia – a life-threatening condition that can result in brain swelling. Similarly, more is known about the mechanisms in the body that detect and drive thirst while little is known about how the brain detects a state of overhydration.

Diabetes drugs show promise to treat symptoms of Alzheimer’s disease.

Discovery of a pathway linking Alzheimer’s disease and Type 2 Diabetes leads to new strategies to preserve brain health.

Fernanda De Felice at Queen’s University has discovered a disease mechanism common to Alzheimer’s disease and Type 2 Diabetes.  This mechanism, which consist of a pathway leading to inflammation in different parts of the brain, leads to glucose intolerance, memory impairments and degeneration of the connections between neurons, called synapses.  This discovery can lead the way to new therapies to preserve brain health.  These results were presented at the 2018 Canadian Neuroscience Meeting, in Vancouver, May 16th, 2018.

Stroke: Researchers shed light on the brain recovery process and new treatment strategies.

Researchers at UBC show that two types of cells, astrocytes and pericytes, cooperate to regenerate cerebral blood vessels to restore blood flow in brain regions damaged by stroke.

Stroke is one of three leading causes of death in Canada and leads to permanent disability in about half of survivors.  During an ischemic stroke, there is a blockage of blood flow which results in cell death in a specific area or the brain.  Dr. Brian MacVicar and Dr. Louis-Philippe Bernier at the University of British Columbia has recently discovered how two types of cells, called astrocytes and pericytes, work together to regenerate blood flow in the areas affected by these strokes (called ischemic areas).  These results were presented at the 2018 Canadian Neuroscience Meeting, in Vancouver, May 16th, 2018.

Canadian researchers find key players for building and repairing the brain

Understanding how the brain is built during development leads to new therapeutic approaches for repairing brain injury.

Research by Dr. Freda Miller and her team at the Hospital for Sick Children and the University of Toronto has determined how brain stem cells and the environment they live within collaborate to build brain circuits during development, discoveries that have led to a better understanding of neurodevelopmental disorders in children.  The Miller lab and her basic research collaborators work closely with their clinical colleagues to harness this information and develop new approaches for treating brain injury.  These results were presented at the 2018 Canadian Neuroscience Meeting, in Vancouver, May 15th, 2018.

An energy dense diet changes the brain and increases urge to eat

Rats eating a “cafeteria-diet” show changes in the brain regions that integrate information about food and determines eating behaviour.

Research by Stephanie Borgland at the University of Calgary shows that giving rats unrestricted access to unhealthy foods for extended periods not only leads to obesity, but also to brain changes that makes food more attractive to them, even when their hunger should be satisfied.  Specifically, Dr. Borgland’s research identified modifications in endocannabinoid signalling in a brain region called the orbitofrontal cortex (OFC) of these obese rats. These unpublished results were presented at the 2018 Canadian Neuroscience Meeting, in Vancouver, May 15th, 2018.

Child abuse has lasting effects in brain region regulating mood and emotions

Cellular and molecular modifications in the brain of child abuse victims could explain their increased vulnerability to stress-related psychiatric disorders, including depression and suicide

Psychiatrists have long known that child abuse increases a person’s lifetime risk of psychiatric illness, including depression and suicide. New research by Naguib Mechawar and Gustavo Turecki from the McGill Group for Suicide Studies offers some explanation of the process through which abuse lastingly modifies brain wiring. Their research, which compare the brains of depressed suicides with or without a history of severe child abuse, and of healthy controls, identified important modifications in the Anterior Cingulate Cortex (ACC), a brain region critical for the regulation of moods and emotions. These findings were presented at the 2018 Canadian Neuroscience Meeting, in Vancouver, May 14th, 2018.

Discovery of differences in the brains of rats classified as workers vs. slackers

Catharine Winstanley at the University of British Columbia presents discoveries revealing the brain mechanisms involved in decision-making

A team of researchers led by Dr. Catharine Winstanley at the University of British Columbia have uncovered a network of regions in the brain that are involved in determining the choice of working harder to get a bigger reward, or putting in a lesser effort and receiving a smaller reward. Understanding how the brain makes such decisions is one of the most fundamental questions in neuroscience and psychology, and sophisticated animal behavioural testing, coupled with advance brain imaging and stimulation techniques are shedding light on this important process. These results were presented at the 2018 Canadian Neuroscience Meeting, in Vancouver, May 14th, 2018.

12th Annual Canadian Neuroscience Meeting

The meeting will gather neuroscientists from Canada and around the world to share their research on the brain and nervous system. All areas of neuroscience research will be presented

New insights into clogged brain capillaries and why we lose them with age

Craig Brown

Craig Brown

Scientists have known for years that blood vessel loss in the brain impacts cognitive decline as people age. New research from the University of Victoria has provided an explanation for why we lose blood vessels—vital knowledge that could lead to better preventive and protective strategies for maintaining brain health.

UVic neuroscientist Craig Brown and PhD student Patrick Reeson have been researching the phenomenon of clogged capillaries, the brain’s smallest blood vessels. These tiny capillaries routinely get “stuck,” clogged by cells, fat and debris in the blood. Most clear within seconds to minutes, however some can remain stuck for much longer, but what ultimately happens to these lingering clogs has remained a mystery.

National study on vulnerability in mental health and psychiatric research

Invitation to participate in a research study on vulnerability in mental health research ethics

National study on vulnerability in mental health and psychiatric research

Does a mental health condition prevent someone from being able to participate to research?

What are acceptable conditions for ethical mental health and psychiatric research?

Strict eating schedule can lower Huntington disease protein in mice

Michael Hayden

Michael Hayden

New research from the University of British Columbia suggests that following a strict eating schedule can help clear away the protein responsible for Huntington disease in mice.

Huntington disease (HD) is an inherited, progressive disorder that causes involuntary movements and psychiatric problems. Symptoms appear in adulthood and worsen over time. Children born to a parent with HD have a one in two chance of inheriting the disease, which is caused by a buildup of mutant huntingtin protein (mHTT).

Better understanding ALS by looking at how cells change

Jade-Emmanuelle Deshaies - Christine Vande Velde

Jade-Emmanuelle Deshaies – Christine Vande Velde

Eight years in the making, a discovery by neuroscientists at the CRCHUM highlights the value of long-term, fundamental research and provides important information for future drug targets.

It took eight long years of research, but now an international team led by neuroscientists at Université de Montréal has discovered a basic molecular mechanism that better helps understand how Lou Gehrig’s disease, or amyotrophic lateral sclerosis (ALS), works.

McMaster researchers pinpoint genes causing complex brain disorders

Karun Singh

McMaster University Scientists have published 2 studies identifying which gene is responsible for causing brain development disorders when several genes are deleted in an individual’s genome, providing a path forward for developing new therapies.

In Ontario, there are more than 300,000 children and youth affected by a neurodevelopmental disorder such as autism spectrum disorders, attention deficit hyperactivity disorder, and intellectual disability. These disorders typically cause long-term problems and impact the day-to-day life of affected individuals and families. There are no specific treatments, and medications have side-effects that can be severe in children and young adults.

Research uncovers new link between head trauma, CTE and ALS

Strong & Moszczynski

Researchers at Western University have uncovered a unique neurobiological pathway triggered by head trauma which underlies both Chronic Traumatic Encephalopathy (CTE) and amyotrophic lateral sclerosis (also called ALS or Lou Gehrig’s Disease).

CTE is a fatal neurodegenerative disease shown to be a result of repeated head trauma, and is associated with elite athletes involved in contact sports. Previous research has shown that between 4 and 6 per cent of patients with CTE will also simultaneously show clinical features of ALS – that’s 800 fold higher than the prevalence of ALS in the general population.

Not being aware of memory problems predicts onset of Alzheimer’s disease

Pedro Rosa-Neto

Pedro Rosa-Neto

New research could provide clinicians with insights regarding clinical progression to dementia

Doctors who work with individuals at risk of developing dementia have long suspected that patients who do not realize they experience memory problems are at greater risk of seeing their condition worsen in a short time frame, a suspicion that now has been confirmed by a team of McGill University clinician scientists.

Concussion stalls adolescent brains, reduces cognitive flexibility

Naznin Virji-Babul

Naznin Virji-Babul

Concussion affects the developing adolescent brain and may delay key cognitive processes, hampering the brain’s ability to change focus and pay attention. New research from Dr. Naznin Virji-Babul’s team, published today in the journal ASN Neuro, shows that concussion changes the way that different neural networks interact, stalling the brain in a state of cognitive inflexibility.

Even at rest, the brain is continuously active, processing and exchanging information.  This active interaction between different parts of the brain is necessary for a person to be aware of her surroundings, or to be able to focus on his work or switch between tasks.

Longer, better, faster … smaller? New genome sequencing tool promises richer biological insight

Terrance Snutch

Terrance Snutch

For the past three years, Dr. Terrance Snutch and research associate Dr. John Tyson have been working with Oxford Nanopore Technologies (ONT) to develop a novel deoxyribonucleic acid (DNA) sequencing tool with promising implications for personalized medicine. About the size of a mobile phone, the MinION device is a USB-powered DNA sequencer capable of mapping complex genomic structures; with it, researchers were recently able to assemble a complete human genome using reads hundreds of times larger than has previously been possible with conventional methods.