Researchers identify specific neurons that distinguish between reality and imagination

Julio Martinez-Trujillo
Julio Martinez-Trujillo

New Western University research shows that neurons in the part of the brain found to be abnormal in psychosis are also important in helping people distinguish between reality and imagination.

The researchers, Dr. Julio Martinez-Trujillo, principal investigator and professor at Western University’s Schulich School of Medicine & Dentistry and Dr. Diego Mendoza-Halliday, postdoctoral researcher at M.I.T., investigated how the brain codes visual information in reality versus abstract information in our working memory and how those differences are distributed across neurons in the lateral prefrontal cortex region of the brain. The results were published today in Nature Communications (https://www.nature.com/articles/ncomms15471) Continue reading

Researchers identify a new factor essential for the healthy development of a child’s brain

Freda Miller
Freda Miller

Proper brain development is a crucial step in a child’s health. An important part of brain development is the creation of white matter, which enables different regions of the brain to rapidly and effectively “talk” to one another.

In a new study published in Neuron, a team of researchers led by Dr. Freda Miller and Dr. David Kaplan has revealed how oligodendrocytes, which are crucial for proper brain function and that are damaged or altered in conditions such as Multiple Sclerosis, autism and concussions, are formed during development. Continue reading

University of Ottawa Researchers Have Found Yet Another Benefit From Exercise

No one can argue against exercise being good for you. Decades of research have revealed how getting our bodies in motion can offer a wealth of health benefits. Our muscles, metabolism, and immunity all improve as well as our brains. Our ability to learn and remember gets better and we may be able to ward off diseases such as Alzheimer’s disease  and multiple sclerosis  . Continue reading

Researchers at Dalhousie University Reveal A Startling Phenomenon in Evolution

Have you ever been startled by a sudden noise, sight or touch? It can be quite a shock to the system. You tense up, your mind blanks out all previous thoughts, and you find yourself preparing for the worst. Then there are the lingering effects that can last for minutes after it is all over. While you may hate the feeling of being startled, neuroscience researchers have found the entire process is a natural part of life inherited in evolution from our ancient ancestors. Continue reading

McGill Researchers Have Found A Fungal Toxin May One Day Repair Damage To The Central Nervous System

Injuries are a part of life. In most cases, such as cuts, bruises, tears, and even broken bones, our bodies heal. But when damage occurs to the central nervous system – or as most people call it, CNS – the outlook can be heartbreaking. The cells in this area, known as neurons, simply are not good at regeneration. This is why damage to the spinal cord and retina is considered a dire ailment.

Continue reading

Two CAN Young Investigator Awards in 2017: Przemyslaw (Mike) Sapieha, from Université de Montréal, and Tuan Trang, from University of Calgary.

The Canadian Association for Neuroscience is proud to announce it will be awarding two Young Investigator Awards in 2017.  The laureates are Przemyslaw (Mike) Sapieha, from Université de Montréal, and Tuan Trang, from University of Calgary.  The CAN nominations committee was equally impressed with both candidates, who have made important contributions to our understanding of the brain and the nervous system in the early stages of their careers.  Both winners have developed a strong program of basic, curiosity-driven research that have led to discoveries that can be used to improve the lives of Canadians. Continue reading

Molecule shown to repair damaged axons

Alyson Fournier

Discovery could be key to treating brain and spinal cord injury

A foray into plant biology led one researcher to discover that a natural molecule can repair axons, the thread-like projections that carry electrical signals between cells. Axonal damage is the major culprit underlying disability in conditions such as spinal cord injury and stroke.

Andrew Kaplan, a PhD candidate at the Montreal Neurological Institute and Hospital of McGill University, was looking for a pharmacological approach to axon regeneration, with a focus on 14-3-3, a family of proteins with neuroprotective functions that have been under investigation in the laboratory of Dr. Alyson Fournier, professor of neurology and neurosurgery and senior author on the study. Continue reading

Second study from UBC shows “liberation therapy” fails to treat multiple sclerosis

Anthony Traboulsee
Anthony Traboulsee

Opening up narrowed veins from the brain and spinal cord is not effective in treating multiple sclerosis (MS), according to a study led by the University of British Columbia and Vancouver Coastal Health.

The conclusions about so-called “liberation therapy,” which thousands of people with MS have undergone since 2009, represent the most definitive debunking of the claim that MS patients could achieve dramatic improvements from a one-time medical procedure. Continue reading

Largest international study of its kind finds new schizophrenia risk genes

Stephen Scherer
Stephen Scherer

Results of the International Psychiatric Genomics Consortium unveiled

TORONTO – Canadian and international scientists have uncovered six new schizophrenia risk genes in the largest study of its kind. The results of the international Psychiatric Genomics Consortium CNV working group are published in the Nov. 21 advance online edition of Nature Genetics, and further support the important role genes play in susceptibility to schizophrenia, and may be helpful in early diagnosis.

Continue reading