CAN Social Nov 12 at Brixton Pub CAN Connection Tuan Trang and Mike Sapieha - CAN Young Investigator winners for 2017 Canadian Neuroscience Research luncheon in Parliament impact of neurological disorders in Canada

 

CAN-ACN news

University of British Columbia Researchers Take A Closer Look At The Potential For Stem Cell Therapy After Spinal Cord Injury

Journal of Neuroscience cover

Injury of the spinal cord is a traumatic and life-changing event that affects over three million people worldwide. Over the last decade, researchers have been examining ways to help repair injured individuals through the use of stem cell transplantation. Significant progress has been made in this area yet many unanswered questions remain. For the laboratory of Dr. Wolfram Tetzlaff at the University of British Columbia, these gaps need to be filled to ensure successful treatments in the future.

For Neil who is living with dystonia, fundamental research offers hope and partial relief.

Neil Merovitch is an impressive and resilient young man who has very personal reasons to believe in the importance of fundamental research.  At a young age, he was diagnosed with dystonia, a devastating disease in which normal movement is impaired due to neurological dysfunction. Individuals with this condition deal with sustained or repetitive, and often painful, muscle contractions.

Yet from the moment you meet Neil, his passion for fundamental research is clear. “I’ve always been interested in research,” he says. “It’s fascinating for me to explore the link between brain and behaviour each and every day.”  And dystonia does not prevent him from pursuing his goal, which is to obtain a PhD in neuroscience and physiology from the University of Toronto.

Sick Kids Researchers Have Found An Unexpected Twist in How Our Brains Develop

One example of the latter recently came from the joint laboratory of Freda Miller and David Kaplan, at the Hospital for Sick Children in Toronto. They found that a type of cell known for transmitting information between nerve cells also plays another vital role. It instructs stem cells that build the brain to make another type of cell called an oligodendrocyte. This cell is crucial for making sure communication and information transmission in the brain happen at the right time in the right place. The results were published in the journal, Neuron, http://www.cell.com/neuron/fulltext/S0896-6273(17)30344-6.

Neuroscience news

The two faces of depression

Benoit Labonté

Benoit Labonté

Major depression affects the expression of genes in the brains of women and men differently

Major depression presents itself quite differently in women and men, and this dimorphism would have genomic foundations, suggests a study that has just been published in Nature Medicine. According to the first author of this study, Benoit Labonté of the CERVO Brain Research Centre at Université Laval, these differences are such that the search for new antidepressants would benefit from targeting mechanisms specific to each sex.

Pinpointing the origins of autism

Abnormalities shown to first appear in brain networks involved in sensory processing

The origins of autism remain mysterious. What areas of the brain are involved, and when do the first signs appear? New findings published in Biological Psychiatry bring us closer to understanding the pathology of autism, and the point at which it begins to take shape in the human brain. Such knowledge will allow earlier interventions in the future and better outcomes for autistic children.

Could olfactory loss point to Alzheimer’s disease?

John Breitner

John Breitner

Promising finding suggests odour identification tests may help scientists track the evolution of the disease in persons at risk

By the time you start losing your memory, it’s almost too late. That’s because the damage to your brain associated with Alzheimer’s disease (AD) may already have been going on for as long as twenty years. Which is why there is so much scientific interest in finding ways to detect the presence of the disease early on. Scientists now believe that simple odour identification tests may help track the progression of the disease before symptoms actually appear, particularly among those at risk.

Muscle function regained in CRISPR-treated mice with congenital muscular dystrophy, SickKids study finds

Ronald Cohn

Ronald Cohn

Scientists at The Hospital for Sick Children (SickKids) have used the gene-editing tool CRISPR to correct a disease-causing mutation in mice with a form of congenital muscular dystrophy, MDC1A. The findings, published in the July 17 online edition of Nature Medicine, show significant improvement in muscle strength and function among the mice treated with CRISPR, with no remaining signs of paralysis.

MDC1A is a rare neuromuscular disease affecting one in 150,000 worldwide. It is caused by a mutation in a gene called laminin alpha 2 and is characterized at birth by muscle weakness and low muscle tone, as well as brain abnormalities. Babies born with this condition eventually lose all muscle function and live an average of 30 years.

Brains are more plastic than we thought

Chris Pack

Chris Pack

Researchers train brains to use different regions for same task

Practice might not always make perfect, but it’s essential for learning a sport or a musical instrument. It’s also the basis of brain training, an approach that holds potential as a non-invasive therapy to overcome disabilities caused by neurological disease or trauma.

Research at the Montreal Neurological Institute and Hospital of McGill University (The Neuro) has shown just how adaptive the brain can be, knowledge that could one day be applied to recovery from conditions such as stroke.