CAN 2018 elections CAN Connection January 2018 CAN Advocacy awards 2018 Tuan Trang and Mike Sapieha - CAN Young Investigator winners for 2017 impact of neurological disorders in Canada


CAN-ACN news

Canadian Researchers Reveal How Certain Chronic Diseases Can Worsen The Effects of Multiple Sclerosis

Ruth Ann Marrie

Ruth Ann Marrie

Multiple Sclerosis is known as a progressive disease in which symptoms worsen over time. But for some 85% of those who suffer, the first stages of the illness come in waves. The individual may feel perfectly well some days while others are marked with worsening or new symptoms.

Officially this condition is known as relapsing remitting multiple sclerosis (MS) and it is the focus of a large Canadian conglomerate known as the CIHR Team in Epidemiology and Impact of Comorbidity on Multiple Sclerosis, or ECoMS. As the name implies, the group aims to determine how co-existing chronic diseases – comorbidities – affect those suffering with MS. Last week, representatives of the team, headed by Dr. Ruth Ann Marrie at the University of Manitoba and Director of Manitoba’s MS Clinic at Health Sciences Centre Winnipeg, revealed their findings in the journal, Neurology.

Researchers at SickKids identify an anti-cancer drug as a candidate to inhibit the degeneration of neurons.

Dr. David Kaplan

Dr. David Kaplan

Nerve injuries and neurodegenerative diseases such as Parkinson’s disease, amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Multiple Sclerosis (MS) and glaucoma share some characteristics, one of which is the degeneration of a part of neurons called the axon.  Axons are long extensions that branch out of the cell body to allow neurons to connect to other cells, including other neurons, to transmit signals.   A team led by SickKids scientist David Kaplan with Freda Miller and their trainees Konstantin Feinberg and Adelaida Kolaj has recently identified a drug, called fortetinib, that protects axons from degeneration in multiple conditions. It may turn out to be a clinically useful therapeutic drug.

University of British Columbia Researchers Take A Closer Look At The Potential For Stem Cell Therapy After Spinal Cord Injury

Journal of Neuroscience cover

Injury of the spinal cord is a traumatic and life-changing event that affects over three million people worldwide. Over the last decade, researchers have been examining ways to help repair injured individuals through the use of stem cell transplantation. Significant progress has been made in this area yet many unanswered questions remain. For the laboratory of Dr. Wolfram Tetzlaff at the University of British Columbia, these gaps need to be filled to ensure successful treatments in the future.

Neuroscience news

McMaster researchers pinpoint genes causing complex brain disorders

Karun Singh

McMaster University Scientists have published 2 studies identifying which gene is responsible for causing brain development disorders when several genes are deleted in an individual’s genome, providing a path forward for developing new therapies.

In Ontario, there are more than 300,000 children and youth affected by a neurodevelopmental disorder such as autism spectrum disorders, attention deficit hyperactivity disorder, and intellectual disability. These disorders typically cause long-term problems and impact the day-to-day life of affected individuals and families. There are no specific treatments, and medications have side-effects that can be severe in children and young adults.

Research uncovers new link between head trauma, CTE and ALS

Strong & Moszczynski

Researchers at Western University have uncovered a unique neurobiological pathway triggered by head trauma which underlies both Chronic Traumatic Encephalopathy (CTE) and amyotrophic lateral sclerosis (also called ALS or Lou Gehrig’s Disease).

CTE is a fatal neurodegenerative disease shown to be a result of repeated head trauma, and is associated with elite athletes involved in contact sports. Previous research has shown that between 4 and 6 per cent of patients with CTE will also simultaneously show clinical features of ALS – that’s 800 fold higher than the prevalence of ALS in the general population.

Not being aware of memory problems predicts onset of Alzheimer’s disease

Pedro Rosa-Neto

Pedro Rosa-Neto

New research could provide clinicians with insights regarding clinical progression to dementia

Doctors who work with individuals at risk of developing dementia have long suspected that patients who do not realize they experience memory problems are at greater risk of seeing their condition worsen in a short time frame, a suspicion that now has been confirmed by a team of McGill University clinician scientists.

Concussion stalls adolescent brains, reduces cognitive flexibility

Naznin Virji-Babul

Naznin Virji-Babul

Concussion affects the developing adolescent brain and may delay key cognitive processes, hampering the brain’s ability to change focus and pay attention. New research from Dr. Naznin Virji-Babul’s team, published today in the journal ASN Neuro, shows that concussion changes the way that different neural networks interact, stalling the brain in a state of cognitive inflexibility.

Even at rest, the brain is continuously active, processing and exchanging information.  This active interaction between different parts of the brain is necessary for a person to be aware of her surroundings, or to be able to focus on his work or switch between tasks.

Longer, better, faster … smaller? New genome sequencing tool promises richer biological insight

Terrance Snutch

Terrance Snutch

For the past three years, Dr. Terrance Snutch and research associate Dr. John Tyson have been working with Oxford Nanopore Technologies (ONT) to develop a novel deoxyribonucleic acid (DNA) sequencing tool with promising implications for personalized medicine. About the size of a mobile phone, the MinION device is a USB-powered DNA sequencer capable of mapping complex genomic structures; with it, researchers were recently able to assemble a complete human genome using reads hundreds of times larger than has previously been possible with conventional methods.

A mutation that causes mirrored sensations

Artur Kania and Ronan da Silva

Artur Kania and Ronan da Silva

Research from the IRCM contributes to our understanding of how our brain locates painful stimuli

When you experience a painful sensation such as touching a hot stove with your hand, the pain is restricted to your hand, allowing you to remove it quickly from the source of heat. How does the brain know that the pain is indeed coming from your hand and not from anywhere else on your body? Work recently published by Montreal Clinical Research Institute (IRCM) researchers help clarifying this question.