Presidential lecture:
Michael Hausser
Professor of Neuroscience and Wellcome Principal Research Fellow
Wolfson Institute for Biomedical Research – University College London
Michael Häusser has made fundamental contributions to our understanding of how the complex dendritic structures of nerve cells contribute to the functional computations that occur in the mammalian brain. He has achieved this by the introduction and exploitation of advanced techniques, coupled with careful quantitative analysis and modelling of the experimental results. His most distinctive contribution has been to illuminate how non-linear mechanisms in neuronal dendrites contribute to the complex behaviour and plasticity of nerve networks in the brain
Citation from Michael Hausser’s certificate of election to the Royal Society
Learn more: http://www.dendrites.org/
Keynote lecture:
Frank Polleux
Columbia University
Research in Frank Polleux’s laboratory focuses on three important questions relevant to brain development, aging and evolution:
- What are the cellular and molecular mechanisms patterning the connectivity of cortical circuits during mammalian development?
- What are the signaling mechanisms underlying synaptic loss during early stages of Alzheimer’s Disease?
- What are the genetic mechanisms that led to the evolution of human cortical circuits?
Their work provides new insights into the cellular and molecular mechanisms underlying the establishment and maintenance of brain connectivity and has significant implications for our understanding of the pathophysiological mechanisms underlying socially-devastating neurodevelopmental disorders and neurodegenerative diseases.
Learn more: https://polleuxlab.com
Plenary Speaker:
Gwyneth Card
Group leader HHMI-Janelia research campus
The Card Lab studies the neural mechanisms and circuit architectures that underlie behavior choice for ecologically relevant, visually-guided behaviors of the fly. Their work combines high-throughput, high-resolution behavioral quantification with genetic, electrophysiological, and functional imaging techniques.
Learn more: https://www.janelia.org/lab/card-lab
Plenary Speaker:
Magdalena Götz
Head of Ludwig-Maximilians-Universität München Department of Physiological Genomics
Director of the Institute of Stem Cell Research – Helmholz Center Munich
Regular member of the Munich Center for Neurosciences – Brain and Mind
Among her achievements, Dr. Magdalena Götz discovered that glial cells, which form the supporting tissue of the nervous system, also have stem cell properties, and she thereby initiated a paradigm shift in neuroscience. Götz identified a molecular mechanism in which the transcription factor Pax6 stimulates glial cells in a few regions of the adult brain to generate neurons. The fact that glial cells function as stem cells and that neurons can emerge from them raises a new perspective on neurogenesis and the differentiation of the cerebral cortex.
Götz and her team also investigated how glial cells behave after injury to the brain. Initially, she was able to show that the transcription factor Pax6 stimulates some glial cells to form immature neurons even after injury. In more recent model experiments, she succeeded in transforming the treated glial cells almost completely into mature and functional nerve cells. Her research is therefore of great importance for applied stem cell research and new therapeutic approaches to brain injuries and diseases.
Learn more: https://www.mcn.uni-muenchen.de/members/regular/goetz/index.html
Special Brain Prize lecture
Huda Zoghbi
Winner of the 2020 Brain Prize – Lundbeck Foundation
Professor, Baylor College of Medicine
Investigator, Howard Hughes Medical Institute
Director, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital
Dr. Huda Y. Zoghbi is an internationally renowned physician-scientist and a central figure in the Rett Syndrome research field. She focuses on genetic and cell biology approaches to explore neurodegenerative and neurodevelopmental diseases. Dr. Zoghbi began her career as a pediatric neurologist, but a chance encounter with a young child with Rett Syndrome drew her from clinical practice into the world of genetics research. She went on to discover the gene Math1 and the molecular pathology underlying spinocerebellar ataxia 1. In 1999, after a 16-year search, the Zoghbi lab identified mutations in the MECP2 gene as the cause of Rett Syndrome. Mutations in MECP2 are now being seen in some cases of childhood schizophrenia, classic autism and learning disabilities.
Learn more: https://www.bcm.edu/people-search/huda-zoghbi-33774