Journey to the end of the neuron

Edouard Khandjian
Edouard Khandjian

Study confirms the existence of a molecular transport mechanism involved in fragile X syndrome

A team from the Centre de recherche de l’Institut universitaire en santé mentale de QuébecUniversité Laval has furthered our understanding of fragile X syndrome, the leading genetic cause of mental retardation in children. The article published by these researchers in a recent issue of PLoS Genetics confirms the model developed over 14 years by the team of Professor Edward Khandjian, and reveals new elements. Continue reading

Brain’s biological clock stimulates thirst before sleep

Bourque-Gizowski-Zaelzer
Bourque, Gizowski, Zaelzer

Discovery could lead to ways to mitigate effects of jet lag and shift work

The brain’s biological clock stimulates thirst in the hours before sleep, according to a study published in the journalNature by McGill University researchers.

The finding — along with the discovery of the molecular process behind it — provides the first insight into how the clock regulates a physiological function. And while the research was conducted in mice, “the findings could point the way toward drugs that target receptors implicated in problems that people experience from shift work or jet lag,” Continue reading

High-speed connections

Armen Saghatelyan
Armen Saghatelyan

Researchers find a mechanism that allows the brain to reconfigure connections between neurons in mere minutes.

A team from the Quebec Mental Health Institute – Université Laval has discovered a mechanism that allows the brain to rapidly reconfigure connections between its neurons. According to the researchers, whose findings were published in a recent issue of the journal Nature Communications, this mechanism plays a central role in brain plasticity. Continue reading

Researchers find new role for cannabinoids in vision

Edward Ruthazer
Edward Ruthazer

Chemicals found to improve low-light vision of tadpoles by sensitizing retinal cells

A multidisciplinary team including researchers from the Montreal Neurological Institute has improved our understanding of how cannabinoids, the active agent in marijuana, affect vision in vertebrates.

Scientists used a variety of methods to test how tadpoles react to visual stimuli when they’ve been exposed to increased levels of exogenous or endogenous cannabinoids. Exogenous cannabinoids are artificially introduced drugs, whereas endogenous cannabinoids occur naturally in the body. Continue reading

New path of discovery in Parkinson’s disease

Heidi McBride
Heidi McBride
Michel Desjardins
Michel Desjardins

Neuron cell death may be caused by overactive immune system 

A team of scientists led by Dr. Michel Desjardins from the University of Montreal and Dr. Heidi McBride from the Montreal Neurological Institute and Hospital (MNI) at McGill University have discovered that two genes associated with Parkinson’s disease (PD) are key regulators of the immune system, providing direct evidence linking Parkinson’s to autoimmune disease.

Using both cellular and mouse models, the team has shown that proteins produced by the two genes, known as PINK1 and Parkin, are required to prevent cells from being detected and attacked by the immune system. Continue reading

Middle-age memory decline a matter of changing focus

Natasha Rajah
Natasha Rajah

Research sheds new light on what constitutes healthy aging of the brain

The inability to remember details, such as the location of objects, begins in early midlife (the 40s) and may be the result of a change in what information the brain focuses on during memory formation and retrieval, rather than a decline in brain function, according to a study by McGill University researchers.

Continue reading

“Big Data” study discovers earliest sign of Alzheimer’s

Alan Evans
Alan Evans
Research underlines importance of computational power in future neurological breakthrough.
Scientists at the Montreal Neurological Institute and Hospital have used a powerful tool to better understand the progression of late-onset Alzheimer’s disease (LOAD), identifying its first physiological signs.
Led by Dr. Alan Evans, a professor of neurology, neurosurgery and biomedical engineering at the Neuro, the researchers analyzed more than 7,700 brain images from 1,171 people in various stages of Alzheimer’s progression using a variety of techniques including magnetic resonance imaging (MRI) and positron emission tomography (PET). Blood and cerebrospinal fluid were also analyzed, as well as the subjects’ level of cognition. Continue reading

Hummingbird vision wired to avoid high-speed collisions

Douglas Altshuler
Douglas Altshuler
Hummingbirds are among nature’s most agile fliers. They can travel faster than 50 kilometres per hour and stop on a dime to navigate through dense vegetation.

Now researchers have discovered that the tiny birds process visual information differently from other animals, perhaps to handle the demands of their extreme aerial acrobatics.

“Birds fly faster than insects and it’s more dangerous if they collide with things,” said Roslyn Dakin, a postdoctoral fellow in the UBC’s department of zoology who led the study. “We wanted to know how they avoid collisions and we found that hummingbirds use their environment differently than insects to steer a precise course.” Continue reading

Understanding how chemical changes in the brain affect Alzheimer’s disease

Marco Prado
Marco Prado

A new study from Western University is helping to explain why the long-term use of common anticholinergic drugs used to treat conditions like allergies and overactive bladder lead to an increased risk of developing dementia later in life. The findings show that long-term suppression of the neurotransmitter acetylcholine – a target for anticholinergic drugs – results in dementia-like changes in the brain.

Continue reading

Parkinson’s disease may be a key to solving the glioblastoma puzzle: SickKids-led study

Peter Dirks
Peter Dirks

As the most common and aggressive cancerous brain tumour in adults, a glioblastoma diagnosis remains a death sentence due to its  resistance to all currently-available treatments. Research in this area has been slow and steady to date. Now, with promising new findings, a Canadian team of scientists is ushering brain cancer research into a new realm: the field of neurodegenerative medicine and neurochemical signalling. Continue reading