Septembre 2010

Analyse bibliométrique de la recherche de l’INSMT, 1997-2008

Vincent LARIVIÈRE, Benoit MACALUSO,
Jean-Pierre ROBITAILLE, Pascal LEMELIN
et Philippe MIRABEL
Observatoire des sciences et des technologies (OST)

Eric MARCOTTE
Initiative de recherche en médecine régérative
et nanomédecine des IRSC (IRMRN)

Nathalie GENDRON
Institut des neurosciences, de la santé mentale
et des toxicomanies des IRSC (INSMT)

Préparé pour
INSMT–IRSC
TABLE DES MATIÈRES

FIGURES ... II

TABLEAUX .. III

INTRODUCTION ... 1

1 MÉTHODES .. 3
 1.1 BASE DE DONNÉES .. 3
 1.2 RÉCUPÉRATION DES ARTICLES DANS CHACUN DES DOMAINES ... 3
 1.3 INDICATEURS ... 5

2 TENDANCES GÉNÉRALES .. 7
 2.1 NOMBRE DE PUBLICATIONS ... 7
 2.2 SPÉCIALISATION ... 11
 2.3 COLLABORATION ... 12

3 NEUROSCIENCES ... 14
 3.1 NEUROIMAGERIE ... 17
 3.2 CELLULES SOUCHES NEURALES .. 20

4 SANTÉ MENTALE .. 23

5 TOXICOMANIE ... 26

6 TROUBLES SENSORIELS ET DES COMMUNICATIONS .. 29
 6.1 DOULEUR ... 32

7 INITIATIVES STRATÉGIQUES CONJOINTES AVEC LES IRSC ... 35
 7.1 MÉDECINE RÉGÉNÉRATIVE .. 35
 7.2 NANOMÉDECINE ... 38
 7.3 ÉPIGÉNÉTIQUE ... 41

CONCLUSION ... 44

NOTE DE TRADUCTION .. 47

NOTES EN FIN DE TEXTE .. 48

ANNEXE 1. MESH TERMS, BY DOMAIN ... 49

ANNEXE 2. JOURNALS INCLUDED, BY DOMAIN .. 51
FIGURES

Figure 1 Nombre d’articles canadiens, par domaine, 1997-2008 __________________________ 7

Figure 2 Pourcentage des articles canadiens par rapport à l’ensemble du monde, par domaine, 1997-2002 et 2003-2008 ____________________________ 9

Figure 3 Indice de spécialisation du Canada, par domaine, 1997-2002 et 2003-2008 _______ 11

Figure 4 Taux de collaboration internationale pour les articles canadiens, par domaine, 1997-2002 et 2003-2008 _______________________________ 12

Figure 5 Taux de collaboration entre établissements pour les articles canadiens, par domaine, 1997-2002 et 2003-2008 _________________________ 13

Figure 6 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine de la neuroscience, 1997-2002 et 2003-2008 _______________________________ 15

Figure 7 Réseau de collaboration des établissements canadiens dans le domaine de la neuroscience, 1997-2008 (50 publications conjointes ou plus) ___________ 16

Figure 8 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine de la neuroimagerie, 1997-2002 et 2003-2008 _______________________________ 18

Figure 9 Réseau de collaboration des établissements canadiens dans le domaine de la neuroimagerie, 1997-2008 (10 publications conjointes ou plus) ___________ 19

Figure 10 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine des cellules souches neurales, 1997-2002 et 2003-2008 _______________________________ 21

Figure 11 Réseau de collaboration des établissements canadiens dans le domaine des cellules souches neurales, 1997-2008 (3 publications conjointes ou plus) _________ 22

Figure 12 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine de la santé mentale, 1997-2002 et 2003-2008 _______________________________ 24

Figure 13 Réseau de collaboration des établissements canadiens dans le domaine de la santé mentale, 1997-2008 (15 publications conjointes ou plus) ___________ 25

Figure 14 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine des toxicomanies, 1992-2002 et 2003-2008 _______________________________ 27
Analyse bibliométrique de la recherche de l’INSMT, 1997-2008

Figure 15 Réseau de collaboration des établissements canadiens dans le domaine des toxicomanies, 1997-2008 (5 publications conjointes ou plus) 28

Figure 16 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine des troubles sensoriels et des communications, 1997-2002 et 2003-2008 30

Figure 17 Réseau de collaboration des établissements canadiens dans le domaine des troubles sensoriels et des communications, 1997-2008 (8 publications conjointes ou plus) 31

Figure 18 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine de la douleur, 1997-2002 et 2003-2008 33

Figure 19 Réseau de collaboration des établissements canadiens dans le domaine de la douleur, 1997-2008 (5 publications conjointes ou plus) 34

Figure 20 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine de la médecine régénérative, 1997-2002 et 2003-2008 36

Figure 21 Réseau de collaboration des établissements canadiens dans le domaine de la médecine régénérative, 1997-2008 (5 publications conjointes ou plus) 37

Figure 22 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine de la nanomédecine, 1997-2002 et 2003-2008 39

Figure 23 Réseau de collaboration des établissements canadiens dans le domaine de la nanomédecine, 1997-2008 (3 publications conjointes ou plus) 40

Figure 24 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine de l’épigénétique, 1997-2002 et 2003-2008 42

Figure 25 Réseau de collaboration des établissements canadiens dans le domaine de l’épigénétique, 1997-2008 (4 publications conjointes ou plus) 43

TABLEAUX

Tableau 1 Nombre d’articles récupérés dans PubMed, et quantité et pourcentage de ces articles rappelés dans le Web of Science 4

Tableau 2 Chevauchement entre chacun des domaines 5

Tableau 3 Rang mondial du Canada pour le nombre d’articles, par domaine, 1997-2002 et 2003-2008 10
<table>
<thead>
<tr>
<th>Tableau</th>
<th>Titre</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Nombre d'articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine de la neuroscience, 1997-2002 et 2003-2008</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Nombre d'articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine de la neuroimagerie, 1997-2002 et 2003-2008</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>Nombre d'articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine des cellules souches neurales, 1997-2002 et 2003-2008</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Nombre d'articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine de la santé mentale, 1997-2002 et 2003-2008</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>Nombre d'articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine des toxicomanies, 1997-2002 et 2003-2008</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>Nombre d'articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine des troubles sensoriels et des communications, 1997-2002 et 2003-2008</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>Nombre d'articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine de la douleur, 1997-2002 et 2003-2008</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>Nombre d'articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine de la médecine régénérative, 1997-2002 et 2003-2008</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>Nombre d'articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine de la nanomédecine, 1997-2002 et 2003-2008</td>
<td>38</td>
</tr>
<tr>
<td>13</td>
<td>Nombre d'articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine de l'épigénétique, 1997-2002 et 2003-2008</td>
<td>41</td>
</tr>
</tbody>
</table>
INTRODUCTION

En 2000, les Instituts de recherche en santé du Canada (IRSC) ont été créés par le gouvernement fédéral canadien pour remplacer le Conseil de recherches médicales (CRM) à titre de principale agence de recherche en santé au pays.

L'Institut des neurosciences, de la santé mentale et des toxicomanies (INSMT) est l’un des treize instituts virtuels chapeautés par les IRSC. Le mandat de l’INSMT consiste à appuyer la recherche qui approfondit les connaissances sur le cerveau (y compris la santé mentale, la santé neurologique, la vision, l’ouïe et les autres systèmes sensoriels), les sciences cognitives, la moelle épinière et les systèmes moteurs. L’objectif consiste à faire progresser notre compréhension de la pensée humaine, des émotions, du comportement, des sensations, des perceptions, de l’apprentissage et de la mémoire, dans l’espoir de réduire l’incidence des maladies du cerveau par des stratégies de prévention, le dépistage, le diagnostic, le traitement, les systèmes de soutien et les soins palliatifs.

En plus d’appuyer la recherche dans le cadre de son mandat, l’INSMT a codirigé de nombreuses initiatives stratégiques conjointes avec les IRSC. Ces initiatives visent à appuyer les nouveaux domaines de recherche dans le secteur de la santé qui s’inscrivent dans les mandats des IRSC. Depuis 2003, l’Initiative de recherche en médecine régénératrice et nanomédecine (IRMRN) a fourni du financement pour la recherche sur les approches de médecine régénératives (notamment les cellules souches, le génie tissulaire et les sciences de la réadaptation) et sur les technologies nouvelles et émergentes (p. ex. la nanomédecine, soit la nanotechnologie appliquée à la santé et les approches nouvelles pour l’administration de médicaments). Plus récemment, sous la direction de l’INSMT, une initiative de Réseau canadien de recherche en épigénétique, en environnement et en santé a été mise sur pied en partenariat avec plusieurs autres instituts des IRSC.

Le présent rapport bibliométrique a été commandé par l’INSMT afin d’analyser la production scientifique des chercheurs canadiens dans les principaux domaines couverts par l’INSMT pendant la période de 1997 à 2008. Un certain nombre de sous-domaines qui semblent constituer des points forts en recherche et qui s’inscrivent dans le mandat de l’INSMT sont également analysés. Les résultats obtenus aideront l’INSMT à réagir au deuxième examen international des IRSC et à documenter son nouveau Plan stratégique. En outre, de nombreux domaines couverts par les IRSC et dirigés entre autres par l’INSMT ont fait l’objet d’un examen. Ces derniers domaines couvrent un champ plus vaste que celui de l’INSMT et représentent des domaines nouveaux et émergents de la recherche multidisciplinaire au Canada. Pour tous les domaines, le présent rapport compare le rendement des chercheurs canadiens avec celui des chercheurs d’autres pays.

Tout au long du rapport, les domaines seront présentés dans l’ordre suivant :

1. Neuroscience
 a. Neuroimagerie
 b. Cellules souches neurales
2. Santé mentale
3. Toxicomanie
4. Troubles sensoriels et des communications
 a. Douleur
5. Médecine régénérative
6. Nanomédecine
7. Épigénétique
Les domaines 1 à 4 représentent les principaux domaines de l’INSMT. Bien que les chevauchements entre le domaine 1 (neuroscience) et les autres domaines principaux soient inévitables, un grand soin a été apporté pour délimiter clairement les paramètres de recherche dans les domaines 2 à 4 (consulter l’annexe 1). Les sous-domaines d’un certain nombre de domaines principaux sont indiqués par leur sous-dénomination alphabétique. Dans chaque cas, ces sous-domaines représentent un sous-ensemble de la recherche dans le domaine qui les englobe.

Les domaines 5 à 7 représentent des secteurs de recherche qui débordent le mandat de l’INSMT. Ce sont des domaines qui s’inscrivent toutefois dans le mandat des IRSC et pour lesquels l’INSMT a joué un rôle de premier plan dans l’élaboration d’initiatives de financement transversales avec les IRSC. On prévoit également que les chercheurs pertinents de l’INSMT joueront un rôle important dans ces domaines.

La première section du présent rapport expose les méthodes et les indicateurs utilisés pour compiler les données bibliométriques. La deuxième section présente l’évolution des tendances en matière de productivité, de spécialisation et de collaboration scientifiques au Canada, pour chacun des domaines et des sous-domaines énumérés précédemment. Enfin, les cinq dernières sections comparent la productivité, la spécialisation, l’impact scientifique et le degré de collaboration du Canada comparativement à ceux des vingt pays les plus productifs dans chacun des dix domaines et sous-domaines.
1 MÉTHODES

1.1 Base de données

Les données bibliométriques présentées ici proviennent de la Banque de données bibliométriques canadienne (BDBC), construite par l’Observatoire des sciences et des technologies (OST) à l’aide du Web of Science (WoS) de Thomson Reuters. Le WoS est constitué de trois bases de données (le Science Citation Index Expanded®, le Social Sciences Citation Index® et l’Arts & Humanities Citation Index®), qui englobaient en 2008 plus de 10 500 publications dans tous les champs de connaissance. Ces bases de données ne comprennent pas tous les documents qui peuvent avoir été publiés par des chercheurs canadiens ou étrangers, car certains travaux sont diffusés par d’autres médias scientifiques non indexés par le WoS (p. ex. des revues très spécialisées, des revues nationales, la littérature grise, et surtout les travaux de congrès non publiés dans des revues). Ainsi, les statistiques présentées ici ne comprennent pas tous les documents qui peuvent avoir été publiés par des chercheurs canadiens ou étrangers. Ce que ces statistiques mesurent, toutefois, c’est la partie des résultats scientifiques des chercheurs qui est la plus visible pour les milieux scientifiques canadiens et internationaux, et qui a donc le plus de chances d’être citée.

Bien que la base de données de l’OST inclue plusieurs types de documents, seuls les articles, les notes de recherche et les articles de synthèse sont généralement retenus pour la production d’études bibliométriques, car ce sont les principaux moyens de diffusion des connaissances nouvelles.

1.2 Récupération des articles dans chacun des domaines

La base de données de l’OST utilise une classification par discipline mise au point par CHI Research et utilisée par la National Science Foundation (NSF) aux États-Unis3. Le principal avantage de cette classification par rapport à celle du WoS est qu’elle permet la catégorisation de chaque revue de façon exclusive à l’intérieur d’une seule discipline, ce qui prévient un double comptage quand les données sont présentées par discipline. Malheureusement, cette classification n’a aucune catégorie correspondant aux dix domaines de recherche analysés dans le présent rapport. Ainsi, pour récupérer des articles dans ces domaines, nous avons eu recours au Medical Subject Headings (MeSH) de la National Library of Medicine des États-Unis, qui se fonde sur un vocabulaire contrôlé pour attribuer un domaine médical à chacun des articles indexés dans la base de données PubMed4. Les termes d’interrogation du MeSH choisies par l’INSMT-IRSC pour chacun des dix domaines sont présentées à l’annexe 1. Le Tableau 1 présente, pour chacun des dix domaines, le pourcentage d’articles récupérés dans PubMed à l’aide de chacun des termes du MeSH, ainsi que le nombre de ces articles rappelés dans le WoS. En plus de ces termes du MeSH, nous avons aussi récupéré tous les articles publiés dans des revues spécialisées dans chacun des domaines (choisies par l’INSMT-IRSC). La neuroimagerie est la seule exception, puisque nous n’avons trouvé aucune revue consacrée à ce domaine. L’annexe 2 présente cette liste de publications pour chacun des dix domaines de recherche.
Tableau 1 Nombre d'articles récupérés dans PubMed, et quantité et pourcentage de ces articles rappelés dans le Web of Science

<table>
<thead>
<tr>
<th>Domain</th>
<th>Papers retrieved from PubMed</th>
<th>Subset published in WoS-indexed journals</th>
<th>N. papers matched</th>
<th>% papers matched</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroscience</td>
<td>1 184 304</td>
<td>1 065 895</td>
<td>961 172</td>
<td>90,2%</td>
</tr>
<tr>
<td>Neuroimaging</td>
<td>223 751</td>
<td>207 635</td>
<td>190 413</td>
<td>91,7%</td>
</tr>
<tr>
<td>Neural Stem Cells</td>
<td>12 915</td>
<td>12 215</td>
<td>11 655</td>
<td>95,4%</td>
</tr>
<tr>
<td>Mental Health</td>
<td>275 936</td>
<td>242 564</td>
<td>215 383</td>
<td>88,8%</td>
</tr>
<tr>
<td>Addiction</td>
<td>77 290</td>
<td>66 902</td>
<td>59 339</td>
<td>88,7%</td>
</tr>
<tr>
<td>Senses</td>
<td>148 640</td>
<td>129 106</td>
<td>111 159</td>
<td>86,1%</td>
</tr>
<tr>
<td>Pain</td>
<td>113 953</td>
<td>97 534</td>
<td>81 742</td>
<td>83,8%</td>
</tr>
<tr>
<td>Regenerative Medicine</td>
<td>44 333</td>
<td>39 137</td>
<td>35 140</td>
<td>89,8%</td>
</tr>
<tr>
<td>Nanomedicine</td>
<td>31 692</td>
<td>29 511</td>
<td>27 516</td>
<td>93,2%</td>
</tr>
<tr>
<td>Epigenetics</td>
<td>35 084</td>
<td>32 795</td>
<td>30 972</td>
<td>94,4%</td>
</tr>
</tbody>
</table>

Un grand nombre de ces articles appartiennent à plus d'un domaine de recherche (Tableau 2). Comme prévu, le domaine de la neuroscience présente un degré élevé de chevauchement avec les autres domaines principaux de l'INSMT, avec beaucoup d'articles dans les domaines de la santé mentale (88,8 %), des toxicomanies (76,2 %) et des troubles sensoriels et des communications (51,1 %). Évidemment, la neuroscience est un domaine plus vaste que tous les autres : seulement 5 à 20 % de tous les articles en neuroscience correspondent à un seul domaine. Ces résultats s'expliquent par les termes d'interrogation très généraux du MeSH pour le domaine de la neuroscience, comparativement aux termes d'interrogation plus limités associés aux autres domaines principaux (annexe 1).

Lorsque cela était possible, le chevauchement a été réduit le plus possible au sein des principaux domaines de l'INSMT. Par exemple, dans la présente analyse, seuls 10,9 % des articles sur les toxicomanies sont également classés en santé mentale. On peut expliquer ces résultats par la catégorisation mutuellement exclusive des publications et des termes d'interrogation du MeSH entre les autres domaines principaux (consulter les annexes 1 et 2).

Les sous-domaines de l'INSMT, soit la neuroimagerie, les cellules souches neurales et la douleur, sont des sous-ensembles de leurs domaines principaux. Ainsi, en règle générale, 100 % de ces articles sont rattachés à un domaine principal de l'INSMT. Soulignons que le sous-domaine des cellules souches neurales se rapporte à tous les articles qui englobent les domaines des cellules souches et de la neuroscience (annexe 1).

Puisque les domaines de la médecine régénérative, de la nanomédecine et de l'épigénétique, couverts par les IRSC, vont au-delà du mandat de l'INSMT, ils débordent très peu sur les domaines propres à l'INSMT. Cependant, l'épigénétique et la médecine régénérative affichent un chevauchement mesurable avec la neuroscience (10 à 12 %), ce qui démontre l'importance relative de la neuroscience dans ces champs. Soulignons également que la médecine régénérative n'inclut pas tous les articles sur les cellules souches, mais seulement ceux qui concernent les traitements régénératifs (annexe 2).
Tableau 2 Chevauchement entre chacun des domaines

Domain	Neuro.	Neural	Imag	SC	Mental	Health	Addict	Senses	Pain	Reg	Med	Nano	Epi.	All	
-----------------	--------	--------	------	----	--------	--------	--------	--------	------	-----	-----	------	------	------	
Neuroscience			19.5%	1.2%	20.4%	4.9%	10.3%	5.8%	0.5%	0.1%	0.3%	100%			
Neuroimaging	100.0%		5.0%	13.3%	1.4%	14.1%	10.2%	0.3%	0.1%	0.1%	0.3%	100%			
Neural Stem Cells	100.0%	8.9%	4.0%	0.4%	1.9%	5.0%	20.9%	0.4%	1.8%	100%					
Mental Health	88.8%	11.2%	0.2%	3.1%	2.8%	1.8%	0.1%	0.02%	0.1%	100%					
Addiction	76.2%	4.4%	0.1%	10.9%	2.3%	1.6%	0.03%	0.01%	0.1%	100%					
Senses	51.1%	13.6%	0.1%	3.2%	0.7%	43.3%	0.2%	0.0%	0.1%	100%					
Pain	66.5%	22.6%	0.1%	4.8%	1.1%	99.9%	0.2%	0.01%	0.02%	100%					
Regenerative Med.	12.1%	1.3%	6.2%	0.5%	0.05%	1.2%	0.4%	1.6%	1.2%	100%					
Nanomedicine	2.5%	0.8%	0.1%	0.1%	0.02%	0.2%	0.04%	2.2%	0.3%	100%					
Epigenetics	10.0%	0.6%	0.7%	1.7%	0.2%	0.5%	0.1%	1.5%	0.2%	100%					

1.3 Indicateurs

Nombre de publications : Nombre d’articles scientifiques dont les auteurs viennent d’un pays donné, d’après l’adresse des auteurs. Il importe de souligner que les données de 2008 sont incomplètes puisque certaines revues publiées en 2008 n’ont été indexées par Thomson Reuters qu’en 2009, et qu’elles ne sont donc pas encore incluses dans la version actuelle de la BDGC. Cette situation entraîne une sous-estimation de la production scientifique globale de 5 à 10 %. Toutefois, ces publications *non encore indexées* n’ont qu’un effet marginal sur les statistiques exposées dans le présent rapport, puisque toutes les données sont regroupées sur des périodes de six ans. En outre, notre expérience indique que ces publications sont distribuées uniformément entre les champs de connaissance et entre les pays; les comparaisons effectuées dans ce rapport demeurent donc valides.

Moyenne des citations relatives (MCR) : Cet indicateur se fonde sur le nombre de citations d’un article sur une période de deux ans après l’année de publication. Ainsi, pour les articles publiés en 2000, on dénombre les citations reçues entre 2000 et 2002. Cela signifie que le décompte est incomplet pour les citations des articles publiés entre 2007 et 2008. Les auto-citations ne sont pas incluses. Le nombre de citations reçues par chaque article est normalisé par rapport au nombre moyen de citations reçues par tous les articles de la même spécialité (telle que définie par la classification des publications de la National Science Foundation des États-Unis), ce qui permet de tenir compte du fait que les pratiques de citation varient d’un champ à un autre. Lorsque la MCR est supérieure à 1, cela signifie qu’un article ou un groupe d’article obtient un meilleur score que la moyenne mondiale dans sa spécialité; inversement, si la MCR est inférieure à 1, les publications sont citées moins souvent que la moyenne mondiale.

Puisque l’ensemble de données sur les articles qui a été utilisé dans cette étude n’inclut pas tous les articles publiés dans chacune des spécialités NSF de la base de données, mais qu’il s’agit plutôt d’un sous-ensemble d’articles de certaines de ces spécialités, récupérés en recherchant des termes MeSH par publication, la moyenne mondiale pour un domaine donné n’arrive pas nécessairement à 1. En effet, la normalisation des citations par article est effectuée par rapport à l’ensemble de la base de données utilisant la classification de la NSF, pour tous les articles de toutes les spécialités, peu importe que l’étude l’ait pris en compte ou non. Par conséquent, le sous-ensemble d’articles récupérés dans une spécialité (p. ex. le cancer ou la biologie cellulaire) pour un domaine donné (toxicomanie, nanomédecine, etc.) peut présenter des caractéristiques de citation qui sont différentes de celles de tous les articles de la spécialité, ce qui entraîne une moyenne mondiale supérieure ou inférieure à 1. Autrement dit, les moyennes mondiales présentées
dans les figures représentent l'impact scientifique moyen de chaque domaine par rapport à celui de tous les articles publiés dans la même spécialité.

Facteur d'impact relatif moyen (FIRM) : Cet indicateur permet de mesurer l'impact scientifique des revues dans lesquelles publient les auteurs d'un pays donné. Chaque revue a son propre facteur d'impact (FI), calculé chaque année d'après le nombre de citations qu'elle reçoit par rapport au nombre d'articles qu'elle publie. Le FI de chaque revue est par la suite attribué à chacun des articles qu'elle publie. Pour tenir compte des différents pratiques de citation selon les disciplines et les spécialités (p. ex. on compte davantage de citations en recherche biomédicale qu'en mathématiques), le FI de chaque article est divisé par le FI moyen des articles de sa spécialité, ce qui donne le facteur d'impact relatif (FIR). Enfin, le FIRM d'un pays est calculé à l'aide du FIR moyen de tous les articles qu'il a publiés. Un FIRM supérieur à 1 indique que les chercheurs du pays se sont mieux positionnés que la moyenne mondiale, tandis qu'un FIRM inférieur à 1 indique que les chercheurs du pays publient dans des revues citées moins souvent que la moyenne mondiale. Un peu comme dans le cas de la MCR, la moyenne mondiale du FIRM peut être inférieure ou supérieure à 1, selon l'impact moyen du domaine par article, comparativement à celui de son sous-domaine.

Indice de spécialisation (IS) : Indique l'intensité de publication d'un pays dans un domaine donné (cellules souches, neuroscience, etc.) par rapport à l'intensité de publication mondiale dans ce même domaine. Un IS supérieur à 1 signifie qu'un groupe donné de chercheurs est spécialisé par rapport à la moyenne mondiale, tandis qu'un indice inférieur à 1 signifie le contraire.

Taux de collaboration internationale : Indicateur de l'intensité relative de la collaboration scientifique entre pays. Ce taux est calculé en divisant le nombre d'articles dont au moins un auteur a une adresse dans un autre pays par le nombre total d'articles du pays de référence. Le taux de collaboration internationale d'un pays est généralement déterminé par sa taille, c'est-à-dire que les plus grands pays collaborent moins que les plus petits. Donc, si le taux de collaboration internationale du Canada est supérieur à celui de pays qui publient moins de résultats de recherche, on peut en conclure que les partenariats internationaux du Canada sont plus forts que prévu.

Taux de collaboration entre établissements : Indicateur de l'intensité relative de la collaboration scientifique entre établissements. Ce taux est calculé en divisant le nombre d'articles de chercheurs d'au moins deux établissements par le nombre total d'articles de l'entité (p. ex. pays, État, province).

Analyse du réseau : Pour visualiser les liens de collaboration entre les établissements actifs dans les dix domaines de recherche, nous avons effectué une analyse de réseau à l'aide des logiciels UCINET5 (Borgatti, Everett et Freeman, 2002) et Netdraw5 (Borgatti, 2002). Ces logiciels permettent de produire des réseaux en deux dimensions des articles écrits en collaboration. L'épaisseur des traits qui relient les nœuds est déterminée par le nombre d'articles écrits en collaboration par les deux entités. Un seuil minimal du nombre d'articles écrits en collaboration a été établi pour la présentation de chacune des figures afin que le réseau demeure lisible. Les nœuds qui représentent des établissements canadiens sont bleu foncé, et les nœuds qui représentent des organisations étrangères sont gris pâle.

En plus de la représentation graphique du réseau, le degré de centralité des établissements (Freeman, 1979) a été compilé pour évaluer leur importance individuelle dans le réseau. Le degré de centralité est la somme de tous les traits (liens) qui arrivent à un nœud. Ainsi, dans le cas de la collaboration entre établissements, le degré de centralité est la somme de tous les établissements avec lesquels un établissement donné a publié.
2 TENDANCES GÉNÉRALES

2.1 Nombre de publications

La Figure 1 présente l'évolution des publications canadiennes entre 1997 et 2008, par domaine. Les données ont été présentées sur une échelle logarithmique, puisque le nombre de publications canadiennes (et mondiales) varie considérablement selon les domaines. Le domaine le plus vaste est de loin la neuroscience, avec 5 481 publications signées par des chercheurs canadiens en 2007 (les données pour 2008 sont incomplètes). La santé mentale arrive en deuxième place, avec 1 606 publications, suivie par les troubles sensoriels et des communications (1 096), la neuroimagerie (998), la douleur (503), les toxicomanies (360), la médecine régénérative (242), la nanomédecine (240), l'épigénétique (214) et les cellules souches neuronales (81). Pour tous les domaines, le nombre annuel de publications est en hausse. Comme on pouvait s'y attendre, les domaines dont la croissance est la plus rapide sont les plus petits. En effet, le taux de croissance pour la période 1997-2008 se situe entre 50 % et 100 % pour les six premiers domaines, et à plus de 500 % pour la médecine régénérative, l'épigénétique et les cellules souches neuronales. La nanomédecine semble être un domaine en plein essor au Canada : d'une seule publication avant 2000, ce domaine avait fait l'objet d'environ 250 publications par année à la fin de la période étudiée.

Soulignons que l'apparente chute du nombre de résultats dans certains domaines en 2008 s'explique par un ensemble de données de publication incomplet pour cette année-là, et ne doit pas être interprétée comme une baisse relative des résultats.

Figure 1 Nombre d'articles canadiens, par domaine, 1997-2008
Source: Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Dans chacun des domaines analysés, la proportion des articles publiés dans le monde qui ont été signés par des chercheurs canadiens varie dans le temps. La figure 2 indique qu’entre la période 1997-2002 et la période 2003-2008, par rapport à l’ensemble des articles publiés dans le monde, les articles publiés par le Canada sont plus présents dans tous les domaines, à l’exception des cellules souches neurales et de l’épigénétique. Pour toutes les disciplines combinées, les auteurs canadiens ont contribué à 4,4 % de l’ensemble des publications entre 1997 et 2002, et à 4,6 % entre 2003 et 2008. La figure 2 indique que leur contribution aux résultats mondiaux est supérieure à ces pourcentages moyens dans huit des dix domaines à l’étude : santé mentale, cellules souches neurales, douleur, neuroscience, neuroimagerie, troubles sensoriels et des communications et toxicomanies.

Figure 2 Pourcentage des articles canadiens par rapport à l’ensemble du monde, par domaine, 1997-2002 et 2003-2008

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Pour la plupart des disciplines couvertes dans le WoS, la position du Canada pour le nombre d’articles est demeurée relativement stable entre la période 1997-2002 et la période 2003-2008 (Tableau 3). Le Canada a amélioré sa position dans le domaine de la neuroscience (du 6ᵉ au 5ᵉ rang), de la douleur (du 5ᵉ au 4ᵉ rang) et de la nanomédecine (du 14ᵉ au 8ᵉ rang). Il a maintenu sa position relative dans les autres domaines, sauf en épigénétique où il est passé du 6ᵉ au 7ᵉ rang.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroscience</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Neuroimaging</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Neural Stem Cells</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Mental Health</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Addiction</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Senses</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Pain</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Regenerative Medicine</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Nanomedicine</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Epigenetics</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Source : Observatoire des sciences et des technologies (SCI Expanded, SSCI and AHCI and Medline databases) - July 2009 update
2.2 Spécialisation

La Figure 3 présente l’indice de spécialisation du Canada dans chacun des dix domaines. Il montre que le Canada est spécialisé dans sept des dix domaines, plus particulièrement en santé mentale (1,43 pour 2003-2008), en cellules souches neurales (1,30), en douleur (1,25) et en neuroscience (1,25). Entre les périodes 1997-2002 et 2003-2008, la Canada a amélioré sa spécialisation dans sept domaines.

Figure 3 Indice de spécialisation du Canada, par domaine, 1997-2002 et 2003-2008

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
2.3 Collaboration

La Figure 4 montre que le pourcentage de publications canadiennes publiées en collaboration avec des chercheurs étrangers a connu une hausse dans tous les domaines pendant cette période, sauf dans le domaine des cellules souches neurales, qui est resté stable à environ 50 %. Notons cependant que le taux de collaboration internationale pour les articles dans ce domaine était de loin le plus élevé de tous les domaines en 1997-2002, et qu’il a conservé la deuxième position en 2003-2008, juste derrière l’épigénétique. Entre les périodes 1997-2002 et 2003-2008, la collaboration internationale a augmenté d’au moins 10 points de pourcentage dans trois domaines : épigénétique (de 42,0 % à 52,8 %), santé mentale (de 30,5 % à 42,1 %) et neuroimagerie (de 34,7 % à 44,5 %). Pendant la période 2003-2008, entre 40 et 50 % des articles canadiens dans les domaines de la santé mentale, de la neuroimagerie, des cellules souches neurales, de la neuroscience et de la médecine régénérative ont été écrits en collaboration avec des partenaires étrangers. Ce pourcentage se situait sous la barre des 40 % dans les domaines des toxicomanies, de la nanomédecine, de la douleur et des troubles sensoriels et des communications.

![Figure 4 Taux de collaboration internationale pour les articles canadiens, par domaine, 1997-2002 et 2003-2008](image)

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.

La Figure 5 démontre que les taux de collaboration entre établissements ont augmenté entre la période 1997-2002 et la période 2003-2008 dans la plupart des domaines ; dans six domaines de recherche, plus de 70 % des articles canadiens publiés entre 2003 et 2008 étaient cosignés par des chercheurs d’établissements différents. Ces six domaines sont la santé mentale (75,4 %), les toxicomanies (74,2 %), l’épigénétique (73,6 %), les cellules souches neurales (71,7 %), la médecine régénérative (71,2 %) et la neuroimagerie (70,9 %). Les réseaux de collaboration entre établissements présentés dans les sections 3 à 7 précisent les établissements canadiens et étrangers qui participent à ces collaborations.
3 NEUROSCIENCE

Avec une augmentation de 30 % de ses résultats de recherche en neuroscience entre les périodes 1997-2002 et 2003-2008, le Canada est passé de la sixième à la cinquième position pour ce qui est du nombre de publications, tandis que sa production a dépassé celle de la France (Tableau 4). Son indice de spécialisation dans ce domaine a en outre connu une légère hausse, passant de 1,22 à 1,25 entre 1997-2002 et 2003-2008, ce qui place le Canada au quatrième rang des vingt pays les plus productifs. Ce qui est plus significatif encore, c'est que l'impact scientifique des chercheurs canadiens est nettement supérieur à la moyenne mondiale, tant pour les citations reçues (MCR) que pour l'impact des revues (FIRM) : le Canada arrivait au quatrième rang pour la MCR et au cinquième pour le FIRM pendant la période 2003-2008 (voir également la Figure 6). Le taux de collaboration internationale des chercheurs canadiens est légèrement supérieur à celui des chercheurs d'autres pays de la même taille. Étant donné la grande quantité d'articles publiés dans ce domaine, le réseau de collaboration entre établissements est particulièrement dense (Figure 7) et a exigé l’emploi d’un seuil élevé (50 articles ou plus). Les établissements canadiens les plus importants du réseau sont, en ordre décroissant : l’Université de Toronto, l’Université de la Colombie-Britannique, l’Université McGill, le Hospital for Sick Children, l’Université de Calgary, l’Université de l’Alberta, l’Université McMaster et l’Institut et hôpital neurologiques de Montréal.

Tableau 4 Nombre d’articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine de la neuroscience, 1997-2002 et 2003-2008

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Papers</td>
<td>% Internat</td>
</tr>
<tr>
<td></td>
<td>SI</td>
<td>Collabo</td>
</tr>
<tr>
<td>United States</td>
<td>173 085</td>
<td>1,22</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>41 782</td>
<td>1,10</td>
</tr>
<tr>
<td>Germany</td>
<td>36 936</td>
<td>1,02</td>
</tr>
<tr>
<td>Japan</td>
<td>37 962</td>
<td>0,99</td>
</tr>
<tr>
<td>Canada</td>
<td>22 485</td>
<td>1,22</td>
</tr>
<tr>
<td>Italy</td>
<td>20 102</td>
<td>1,18</td>
</tr>
<tr>
<td>France</td>
<td>23 051</td>
<td>0,87</td>
</tr>
<tr>
<td>Australia</td>
<td>12 332</td>
<td>1,07</td>
</tr>
<tr>
<td>Netherlands</td>
<td>11 992</td>
<td>1,16</td>
</tr>
<tr>
<td>Spain</td>
<td>11 552</td>
<td>0,95</td>
</tr>
<tr>
<td>China</td>
<td>3 956</td>
<td>0,27</td>
</tr>
<tr>
<td>Sweden</td>
<td>10 605</td>
<td>1,30</td>
</tr>
<tr>
<td>Switzerland</td>
<td>8 117</td>
<td>1,10</td>
</tr>
<tr>
<td>Brazil</td>
<td>4 572</td>
<td>0,82</td>
</tr>
<tr>
<td>Turkey</td>
<td>3 543</td>
<td>1,15</td>
</tr>
<tr>
<td>South Korea</td>
<td>3 303</td>
<td>0,47</td>
</tr>
<tr>
<td>Israel</td>
<td>5 864</td>
<td>1,13</td>
</tr>
<tr>
<td>Belgium</td>
<td>5 215</td>
<td>0,96</td>
</tr>
<tr>
<td>Austria</td>
<td>4 403</td>
<td>1,13</td>
</tr>
<tr>
<td>Finland</td>
<td>4 751</td>
<td>1,21</td>
</tr>
</tbody>
</table>

World 419 215 1,00 - 1,11 1,07 509 873 1,00 - 1,08 1,05

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Analyse bibliométrique de la recherche de l’INSMT, 1997-2008

Figure 6 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine de la neuroscience, 1997-2002 et 2003-2008

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 7 Réseau de collaboration des établissements canadiens dans le domaine de la neuroscience, 1997-2008 (50 publications conjointes ou plus)

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
3.1 Neuroimagerie

En ce qui concerne le nombre absolu d’articles, les chercheurs canadiens dans le domaine de la neuroimagerie ont conservé la 7e position tout au long de la période (Tableau 5). Cependant, l’impact scientifique du Canada est demeuré bien au-dessus de la moyenne mondiale, et son indice de spécialisation a légèrement augmenté de 1,11 à 1,18 d’une période à l’autre. Le Canada se classe au deuxième rang des 20 pays les plus productifs pour ce qui est des citations reçues (MCR) pendant la période 2003-2008 (ex æquo avec les États-Unis), derrière le Royaume-Uni. Parmi les autres pays qui avaient un impact et un indice de spécialisation relativement importants – quoiqu’une MCR plus faible – entre 2003 et 2008, mentionnons l’Allemagne, les Pays-Bas, la Suisse, la Belgique, l’Autriche et la Finlande (voir également la figure 8). Au chapitre de la collaboration internationale, les chercheurs canadiens semblent collaborer un peu plus que leurs homologues des pays de taille comparable. Les établissements canadiens les plus importants sont, en ordre décroissant, l’Université de Toronto, l’Université de la Colombie-Britannique, l’Institut et hôpital neurologiques de Montréal, l’Université McGill et le Hospital for Sick Children (figure 9).

Tableau 5 Nombre d’articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine de la neuroimagerie, 1997-2002 et 2003-2008

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Papers</td>
<td>SI</td>
</tr>
<tr>
<td>United States</td>
<td>27 705</td>
<td>1,05</td>
</tr>
<tr>
<td>Germany</td>
<td>8 380</td>
<td>1,24</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>7 121</td>
<td>1,00</td>
</tr>
<tr>
<td>Japan</td>
<td>9 292</td>
<td>1,30</td>
</tr>
<tr>
<td>Italy</td>
<td>4 443</td>
<td>1,40</td>
</tr>
<tr>
<td>France</td>
<td>4 676</td>
<td>0,95</td>
</tr>
<tr>
<td>Canada</td>
<td>3 804</td>
<td>1,11</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2 114</td>
<td>1,09</td>
</tr>
<tr>
<td>Australia</td>
<td>1 686</td>
<td>0,78</td>
</tr>
<tr>
<td>Spain</td>
<td>2 179</td>
<td>0,97</td>
</tr>
<tr>
<td>Turkey</td>
<td>1 198</td>
<td>2,09</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1 722</td>
<td>1,25</td>
</tr>
<tr>
<td>China</td>
<td>650</td>
<td>0,24</td>
</tr>
<tr>
<td>South Korea</td>
<td>864</td>
<td>0,66</td>
</tr>
<tr>
<td>Brazil</td>
<td>796</td>
<td>0,77</td>
</tr>
<tr>
<td>Sweden</td>
<td>1 570</td>
<td>1,03</td>
</tr>
<tr>
<td>Belgium</td>
<td>1 087</td>
<td>1,07</td>
</tr>
<tr>
<td>India</td>
<td>771</td>
<td>0,44</td>
</tr>
<tr>
<td>Austria</td>
<td>1 052</td>
<td>1,45</td>
</tr>
<tr>
<td>Finland</td>
<td>1 123</td>
<td>1,53</td>
</tr>
</tbody>
</table>

World 78 207 1,00 - 1,05 1,01 102 947 1,00 - 1,04 1,03

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 8 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine de la neuroimagerie, 1997-2002 et 2003-2008

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 9 Réseau de collaboration des établissements canadiens dans le domaine de la neuroimagerie, 1997-2008 (10 publications conjointes ou plus)

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
3.2 Cellules souches neurales

À l’échelle mondiale, les résultats dans le domaine des cellules souches neurales ont plus que doublé entre 1997-2002 et 2003-2008 (Tableau 6). La position de publication du Canada (6ème) est demeurée la même pendant ces deux périodes, tandis que son indice de spécialisation a connu une légère baisse, passant de 1,37 à 1,30. Son impact scientifique relatif (MCR) a pour sa part subi une chute considérable de 2,28 à 1,77, à l’instar de la moyenne mondiale qui est passée de 1,94 à 1,70. Ainsi, l’impact scientifique des chercheurs canadiens dans le domaine des cellules souches neurales est maintenant légèrement supérieur à la moyenne mondiale pour la période 2003-2008. Pendant cette période, les autres pays qui ont affiché un impact et un indice de spécialisation relativement élevés dans ce domaine sont les États-Unis, l’Allemagne, le Royaume-Uni, l’Italie, la France, Israël et la Suisse (figure 10). Le tableau montre également que les activités de collaboration internationale des chercheurs canadiens sont comparables à celles des chercheurs de pays similaires. Le réseau de collaboration entre établissements présenté à la figure 11 indique que les établissements canadiens les plus importants à cet égard sont l’Université de Toronto, l’Université de la Colombie-Britannique, le Hospital for Sick Children et l’Université McGill.

Tableau 6 Nombre d’articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine des cellules souches neurales, 1997-2002 et 2003-2008

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Papers</td>
<td>% Internat</td>
</tr>
<tr>
<td>United States</td>
<td>1 888</td>
<td>1,54</td>
</tr>
<tr>
<td>Japan</td>
<td>402</td>
<td>1,21</td>
</tr>
<tr>
<td>Germany</td>
<td>364</td>
<td>1,16</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>387</td>
<td>1,18</td>
</tr>
<tr>
<td>Italy</td>
<td>166</td>
<td>1,13</td>
</tr>
<tr>
<td>Canada</td>
<td>218</td>
<td>1,37</td>
</tr>
<tr>
<td>France</td>
<td>237</td>
<td>1,04</td>
</tr>
<tr>
<td>China</td>
<td>19</td>
<td>0,15</td>
</tr>
<tr>
<td>Sweden</td>
<td>133</td>
<td>1,89</td>
</tr>
<tr>
<td>South Korea</td>
<td>36</td>
<td>0,59</td>
</tr>
<tr>
<td>Spain</td>
<td>108</td>
<td>1,03</td>
</tr>
<tr>
<td>Netherlands</td>
<td>149</td>
<td>1,67</td>
</tr>
<tr>
<td>Australia</td>
<td>92</td>
<td>0,92</td>
</tr>
<tr>
<td>Switzerland</td>
<td>84</td>
<td>1,32</td>
</tr>
<tr>
<td>Israel</td>
<td>40</td>
<td>0,89</td>
</tr>
<tr>
<td>Belgium</td>
<td>56</td>
<td>1,19</td>
</tr>
<tr>
<td>Taiwan</td>
<td>19</td>
<td>0,42</td>
</tr>
<tr>
<td>Denmark</td>
<td>20</td>
<td>0,56</td>
</tr>
<tr>
<td>Singapore</td>
<td>16</td>
<td>1,01</td>
</tr>
<tr>
<td>Austria</td>
<td>32</td>
<td>0,95</td>
</tr>
<tr>
<td>World</td>
<td>3 618</td>
<td>1,00</td>
</tr>
</tbody>
</table>

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 10 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine des cellules souches neurales, 1997-2002 et 2003-2008

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 11 Réseau de collaboration des établissements canadiens dans le domaine des cellules souches neurales, 1997-2008 (3 publications conjointes ou plus)

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
4 SANTÉ MENTALE

Le Canada est très actif dans le domaine de la santé mentale. Pour les deux périodes analysées, il s'est classé quatrième pour ce qui est du nombre d'articles publiés, derrière les États-Unis, le Royaume-Uni et l'Allemagne, mais devant des pays plus peuplés comme l'Italie, la France et le Japon (Tableau 7). Son indice de spécialisation dans ce domaine est passé de 1,37 en 1997-2002 à 1,43 en 2003-2008. Au chapitre de son impact scientifique, sa MCR et son FIRM sont demeurés nettement supérieurs à la moyenne mondiale pour les deux périodes à l'étude : en 2003-2008, le Canada s'est classé troisième pour la MCR, ex æquo avec la Belgique, juste derrière les États-Unis et le Royaume-Uni. Pendant la période 2003-2008, les autres pays spécialisés en santé mentale et affichant un impact scientifique supérieur à la moyenne étaient les États-Unis, le Royaume-Uni, l'Australie, les Pays-Bas, la Suisse, la Belgique, la Finlande et le Danemark (voir également la figure 12). Les liens de collaboration internationale des chercheurs canadiens sont plus nombreux que ceux des pays affichant des résultats de recherche similaires. Enfin, en ordre décroissant, les établissements canadiens les plus importants du réseau de collaboration (Figure 13) sont l'Université de Toronto, l'Université de la Colombie-Britannique, l'Université McGill, le Centre de toxicomanie et de santé mentale et l'Université McMaster.

Tableau 7 Nombre d'articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine de la santé mentale, 1997-2002 et 2003-2008

<table>
<thead>
<tr>
<th>Pays</th>
<th>1997-2002</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Papers</td>
<td>SI</td>
<td>Internat</td>
<td>Collabo</td>
<td>ARC</td>
<td>ARIF</td>
<td>Papers</td>
<td>SI</td>
<td>Internat</td>
<td>Collabo</td>
<td>ARC</td>
<td>ARIF</td>
<td>Papers</td>
<td>SI</td>
<td>Internat</td>
<td>Collabo</td>
</tr>
<tr>
<td>États-Unis</td>
<td>40 971</td>
<td>1,37</td>
<td>14,1%</td>
<td>1,63</td>
<td>1,32</td>
<td></td>
<td>55 845</td>
<td>1,43</td>
<td>21,2%</td>
<td>1,56</td>
<td>1,27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Royaume-Uni</td>
<td>10 807</td>
<td>1,35</td>
<td>24,7%</td>
<td>1,45</td>
<td>1,18</td>
<td></td>
<td>15 082</td>
<td>1,46</td>
<td>38,8%</td>
<td>1,49</td>
<td>1,21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allemagne</td>
<td>6 348</td>
<td>0,83</td>
<td>26,2%</td>
<td>1,11</td>
<td>0,89</td>
<td></td>
<td>9 549</td>
<td>0,97</td>
<td>36,3%</td>
<td>1,25</td>
<td>0,97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>5 294</td>
<td>1,37</td>
<td>30,5%</td>
<td>1,43</td>
<td>1,16</td>
<td></td>
<td>8 181</td>
<td>1,43</td>
<td>42,1%</td>
<td>1,44</td>
<td>1,17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australie</td>
<td>3 359</td>
<td>1,38</td>
<td>24,1%</td>
<td>1,12</td>
<td>1,00</td>
<td></td>
<td>5 881</td>
<td>1,59</td>
<td>33,8%</td>
<td>1,24</td>
<td>1,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italie</td>
<td>3 241</td>
<td>0,90</td>
<td>32,8%</td>
<td>1,08</td>
<td>1,03</td>
<td></td>
<td>5 620</td>
<td>1,03</td>
<td>39,6%</td>
<td>1,23</td>
<td>1,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pays-Bas</td>
<td>3 033</td>
<td>1,40</td>
<td>32,4%</td>
<td>1,29</td>
<td>1,17</td>
<td></td>
<td>5 469</td>
<td>1,75</td>
<td>40,8%</td>
<td>1,36</td>
<td>1,19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>3 333</td>
<td>0,60</td>
<td>28,9%</td>
<td>1,06</td>
<td>0,82</td>
<td></td>
<td>4 532</td>
<td>0,64</td>
<td>37,5%</td>
<td>1,17</td>
<td>0,90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japon</td>
<td>4 003</td>
<td>0,50</td>
<td>19,5%</td>
<td>0,81</td>
<td>0,82</td>
<td></td>
<td>4 495</td>
<td>0,45</td>
<td>24,0%</td>
<td>0,91</td>
<td>0,93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espagne</td>
<td>1 877</td>
<td>0,74</td>
<td>22,9%</td>
<td>0,72</td>
<td>0,76</td>
<td></td>
<td>3 436</td>
<td>0,82</td>
<td>33,3%</td>
<td>0,97</td>
<td>0,87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suède</td>
<td>2 325</td>
<td>1,36</td>
<td>33,8%</td>
<td>1,22</td>
<td>1,03</td>
<td></td>
<td>3 162</td>
<td>1,42</td>
<td>44,2%</td>
<td>1,33</td>
<td>1,07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brésil</td>
<td>1 480</td>
<td>1,26</td>
<td>17,4%</td>
<td>0,33</td>
<td>0,35</td>
<td></td>
<td>2 966</td>
<td>1,20</td>
<td>24,5%</td>
<td>0,61</td>
<td>0,57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suisse</td>
<td>1 441</td>
<td>0,93</td>
<td>45,2%</td>
<td>1,16</td>
<td>0,94</td>
<td></td>
<td>2 450</td>
<td>1,09</td>
<td>61,2%</td>
<td>1,36</td>
<td>1,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israël</td>
<td>1 596</td>
<td>1,46</td>
<td>24,2%</td>
<td>0,95</td>
<td>1,03</td>
<td></td>
<td>2 359</td>
<td>1,65</td>
<td>33,2%</td>
<td>0,99</td>
<td>1,03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chine</td>
<td>527</td>
<td>0,17</td>
<td>44,4%</td>
<td>0,88</td>
<td>0,92</td>
<td></td>
<td>2 005</td>
<td>0,20</td>
<td>43,2%</td>
<td>1,04</td>
<td>1,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgique</td>
<td>1 084</td>
<td>0,95</td>
<td>54,3%</td>
<td>1,29</td>
<td>0,97</td>
<td></td>
<td>1 786</td>
<td>1,03</td>
<td>60,8%</td>
<td>1,45</td>
<td>1,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finlande</td>
<td>1 288</td>
<td>1,56</td>
<td>31,4%</td>
<td>1,22</td>
<td>1,10</td>
<td></td>
<td>1 654</td>
<td>1,48</td>
<td>41,6%</td>
<td>1,26</td>
<td>1,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autriche</td>
<td>952</td>
<td>1,17</td>
<td>36,8%</td>
<td>1,00</td>
<td>0,82</td>
<td></td>
<td>1 337</td>
<td>1,13</td>
<td>49,2%</td>
<td>1,20</td>
<td>0,97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norvège</td>
<td>709</td>
<td>1,27</td>
<td>33,3%</td>
<td>0,98</td>
<td>0,90</td>
<td></td>
<td>1 316</td>
<td>1,49</td>
<td>43,4%</td>
<td>1,13</td>
<td>1,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danemark</td>
<td>792</td>
<td>0,91</td>
<td>36,5%</td>
<td>1,30</td>
<td>1,05</td>
<td></td>
<td>1 257</td>
<td>1,04</td>
<td>48,7%</td>
<td>1,28</td>
<td>1,16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monde</td>
<td>88 058</td>
<td>1,00</td>
<td>-</td>
<td>1,25</td>
<td>1,09</td>
<td></td>
<td>124 675</td>
<td>1,00</td>
<td>-</td>
<td>1,21</td>
<td>1,08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 12 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine de la santé mentale, 1997-2002 et 2003-2008

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 13 Réseau de collaboration des établissements canadiens dans le domaine de la santé mentale, 1997–2008 (15 publications conjointes ou plus)

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
5 TOXICOMANIE

Le Tableau 8 montre que pour les deux périodes analysées, le Canada s’est classé cinquième dans le monde en ce qui a trait au nombre de publications. L’indice de spécialisation du Canada dans la recherche sur les toxicomanies est resté stable pendant toute la période, non loin de la moyenne mondiale. Cependant, son impact scientifique a beaucoup augmenté, qu’il s’agisse de l’impact de ses revues (FIRM) ou des citations reçues (MCR). Plus précisément, le Canada est passé de la moyenne mondiale au palmarès des cinq pays ayant le plus grand impact scientifique dans le domaine pour la période 2003-2008. En 2003-2008, les pays spécialisés en toxicomanie et dont l’impact scientifique était supérieur à la moyenne mondiale sont les États-Unis, l’Australie, la Suède et la Suisse (Figure 14). Pour les deux périodes, les chercheurs canadiens ont davantage collaboré avec des partenaires étrangers que leurs homologues d’autres pays plus petits. Les établissements canadiens les plus importants du réseau de collaboration entre établissements (Figure 15) sont, en ordre décroissant, l’Université de Toronto, le Centre de toxicomanie et de santé mentale, l’Université de la Colombie-Britannique, l’Université McGill et l’Université de Montréal.

Tableau 8 Nombre d'articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine des toxicomanies, 1997-2002 et 2003-2008

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Papers</td>
<td>% Internat</td>
<td>ARC</td>
<td>ARIF</td>
<td>Papers</td>
<td>% Internat</td>
<td>ARC</td>
<td>ARIF</td>
</tr>
<tr>
<td>United States</td>
<td>14 867</td>
<td>1,68</td>
<td>9,1%</td>
<td>1,33</td>
<td>12,2</td>
<td>19 690</td>
<td>1,85</td>
<td>13,8%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2 001</td>
<td>0,84</td>
<td>20,3%</td>
<td>1,12</td>
<td>1,02</td>
<td>2 629</td>
<td>0,93</td>
<td>32,3%</td>
</tr>
<tr>
<td>Australia</td>
<td>1 092</td>
<td>1,51</td>
<td>17,4%</td>
<td>1,09</td>
<td>1,01</td>
<td>1 731</td>
<td>1,72</td>
<td>29,8%</td>
</tr>
<tr>
<td>Germany</td>
<td>1 167</td>
<td>0,52</td>
<td>23,1%</td>
<td>1,00</td>
<td>0,87</td>
<td>1 627</td>
<td>0,60</td>
<td>32,3%</td>
</tr>
<tr>
<td>Canada</td>
<td>1 152</td>
<td>1,00</td>
<td>29,1%</td>
<td>1,08</td>
<td>1,08</td>
<td>1 585</td>
<td>1,02</td>
<td>37,2%</td>
</tr>
<tr>
<td>Spain</td>
<td>1 370</td>
<td>1,82</td>
<td>12,7%</td>
<td>0,52</td>
<td>0,53</td>
<td>1 555</td>
<td>1,36</td>
<td>19,9%</td>
</tr>
<tr>
<td>France</td>
<td>882</td>
<td>0,54</td>
<td>23,7%</td>
<td>1,00</td>
<td>0,89</td>
<td>992</td>
<td>0,51</td>
<td>28,4%</td>
</tr>
<tr>
<td>Italy</td>
<td>724</td>
<td>0,68</td>
<td>26,0%</td>
<td>1,12</td>
<td>1,00</td>
<td>834</td>
<td>0,56</td>
<td>38,5%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>440</td>
<td>0,68</td>
<td>27,5%</td>
<td>1,11</td>
<td>1,15</td>
<td>780</td>
<td>0,92</td>
<td>33,8%</td>
</tr>
<tr>
<td>Japan</td>
<td>727</td>
<td>0,30</td>
<td>19,4%</td>
<td>0,81</td>
<td>1,04</td>
<td>734</td>
<td>0,27</td>
<td>21,8%</td>
</tr>
<tr>
<td>Sweden</td>
<td>594</td>
<td>1,17</td>
<td>37,2%</td>
<td>0,96</td>
<td>1,12</td>
<td>671</td>
<td>1,11</td>
<td>44,6%</td>
</tr>
<tr>
<td>Switzerland</td>
<td>427</td>
<td>0,93</td>
<td>43,8%</td>
<td>1,20</td>
<td>1,09</td>
<td>629</td>
<td>1,02</td>
<td>55,6%</td>
</tr>
<tr>
<td>China</td>
<td>148</td>
<td>0,16</td>
<td>45,9%</td>
<td>1,02</td>
<td>0,88</td>
<td>500</td>
<td>0,18</td>
<td>48,8%</td>
</tr>
<tr>
<td>Brazil</td>
<td>199</td>
<td>0,57</td>
<td>30,2%</td>
<td>0,53</td>
<td>0,72</td>
<td>441</td>
<td>0,65</td>
<td>33,3%</td>
</tr>
<tr>
<td>Finland</td>
<td>436</td>
<td>1,78</td>
<td>43,1%</td>
<td>1,20</td>
<td>1,27</td>
<td>430</td>
<td>1,41</td>
<td>44,0%</td>
</tr>
<tr>
<td>Taiwan</td>
<td>126</td>
<td>0,38</td>
<td>24,6%</td>
<td>0,76</td>
<td>0,92</td>
<td>291</td>
<td>0,48</td>
<td>26,1%</td>
</tr>
<tr>
<td>Denmark</td>
<td>158</td>
<td>0,61</td>
<td>32,9%</td>
<td>1,01</td>
<td>1,20</td>
<td>281</td>
<td>0,86</td>
<td>42,0%</td>
</tr>
<tr>
<td>Belgium</td>
<td>174</td>
<td>0,51</td>
<td>43,7%</td>
<td>0,92</td>
<td>0,98</td>
<td>256</td>
<td>0,54</td>
<td>51,2%</td>
</tr>
<tr>
<td>Norway</td>
<td>162</td>
<td>0,98</td>
<td>42,0%</td>
<td>0,91</td>
<td>1,06</td>
<td>245</td>
<td>1,02</td>
<td>36,3%</td>
</tr>
<tr>
<td>Russia</td>
<td>196</td>
<td>0,22</td>
<td>30,6%</td>
<td>0,41</td>
<td>0,44</td>
<td>208</td>
<td>0,24</td>
<td>57,7%</td>
</tr>
<tr>
<td>World</td>
<td>26 136</td>
<td>1,00</td>
<td>-</td>
<td>1,11</td>
<td>1,07</td>
<td>33 983</td>
<td>1,00</td>
<td>-</td>
</tr>
</tbody>
</table>

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 14 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine des toxicomanies, 1992-2002 et 2003-2008

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 15 Réseau de collaboration des établissements canadiens dans le domaine des toxicomanies, 1997-2008 (5 publications conjointes ou plus)

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
TROUBLES SENSORIELS ET DES COMMUNICATIONS

Avec une hausse de 36 % entre 1997-2002 et 2003-2008, les résultats de recherche du Canada dans le domaine des troubles sensoriels et des communications ont maintenu le pays au cinquième rang des pays les plus productifs (Tableau 9). Dans la même veine, le Canada est demeuré spécialisé dans ce domaine, puisque son indice a très légèrement augmenté (de 1,15 à 1,17). Pour les deux périodes à l’étude, l’impact scientifique du Canada se situe bien au-dessus de la moyenne mondiale, et sa MCR se classe au deuxième rang des pays présentés au Tableau 9. En 2003-2008, les autres pays qui avaient un indice de spécialisation et un impact scientifique élevés en troubles sensoriels et des communications sont les États-Unis, le Royaume-Uni, l’Australie, les Pays-Bas, la Suède, la Suisse, la Belgique, le Danemark, l’Autriche et la Finlande (voir aussi la Figure 16). Les taux de collaboration internationale des auteurs canadiens sont à peine plus importants que ceux de pays de la même taille. Étant donné la grande quantité d’articles, le réseau de collaboration entre établissements est relativement dense (figure 17) et a exigé l’emploi d’un seuil élevé (15 articles ou plus). Le réseau indique que les établissements canadiens les plus importants dans ce domaine sont l’Université de Toronto, l’Université de la Colombie-Britannique, l’Université McGill, l’Université de l’Alberta et l’Université de Montréal.

Tableau 9 Nombre d’articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine des troubles sensoriels et des communications, 1997-2002 et 2003-2008

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Papers</td>
<td>SI</td>
</tr>
<tr>
<td>États-Unis</td>
<td>33 977</td>
<td>1,22</td>
</tr>
<tr>
<td>Royaume-Uni</td>
<td>8 615</td>
<td>1,16</td>
</tr>
<tr>
<td>Allemagne</td>
<td>6 700</td>
<td>0,94</td>
</tr>
<tr>
<td>Japon</td>
<td>6 258</td>
<td>0,83</td>
</tr>
<tr>
<td>Canada</td>
<td>4 150</td>
<td>1,15</td>
</tr>
<tr>
<td>France</td>
<td>3 927</td>
<td>0,76</td>
</tr>
<tr>
<td>Australie</td>
<td>2 974</td>
<td>1,31</td>
</tr>
<tr>
<td>Italie</td>
<td>2 865</td>
<td>0,86</td>
</tr>
<tr>
<td>Pays-Bas</td>
<td>2 266</td>
<td>1,12</td>
</tr>
<tr>
<td>Royaume-Uni</td>
<td>1 206</td>
<td>0,26</td>
</tr>
<tr>
<td>Chine</td>
<td>1 490</td>
<td>0,63</td>
</tr>
<tr>
<td>Suisse</td>
<td>1 376</td>
<td>0,95</td>
</tr>
<tr>
<td>Inde</td>
<td>928</td>
<td>0,51</td>
</tr>
<tr>
<td>Israël</td>
<td>1 239</td>
<td>1,22</td>
</tr>
<tr>
<td>Belgique</td>
<td>892</td>
<td>0,83</td>
</tr>
<tr>
<td>Danemark</td>
<td>1 102</td>
<td>1,35</td>
</tr>
<tr>
<td>Autriche</td>
<td>972</td>
<td>1,28</td>
</tr>
<tr>
<td>Finland</td>
<td>1 115</td>
<td>1,45</td>
</tr>
</tbody>
</table>

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 16 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine des troubles sensoriels et des communications, 1997-2002 et 2003-2008

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 17 Réseau de collaboration des établissements canadiens dans le domaine des troubles sensoriels et des communications, 1997-2008 (8 publications conjointes ou plus)

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
6.1 Douleur

Entre les périodes 1997-2002 et 2003-2008, le Canada est passé de la cinquième à la quatrième position parmi les pays les plus productifs en recherche sur la douleur, puisque sa production a surpassé celle du Japon (Tableau 10). Qui plus est, le Canada a maintenu sa spécialisation dans le domaine, malgré une baisse minime de son indice qui est passé de 1,28 à 1,25 entre les périodes 1997-2002 et 2003-2008. Il est impressionnant de constater que les chercheurs canadiens sont ceux qui ont le plus grand impact scientifique au monde dans ce domaine, tant au chapitre des citations reçues (MCR) qu’au celui de l’impact des revues (FIRM), et qu’il arrive au premier rang des 20 pays les plus influents pour les deux périodes analysées. En 2003-2008, les autres pays spécialisés qui avaient un impact scientifique relativement élevé dans le domaine de la douleur sont les États-Unis, le Royaume-Uni, l’Australie, les Pays-Bas, la Suède, le Danemark, la Suisse, la Belgique et la Finlande (Figure 18). Pour les deux périodes, le taux de collaboration internationale des chercheurs canadiens était supérieur à celui d’autres pays de la même taille. Le réseau de collaboration entre établissements (figure 19) montre que les établissements canadiens les plus importants sont l’Université de Toronto, l’Université de la Colombie-Britannique, l’Université McGill, l’Université de l’Alberta et l’Université McMaster.

Tableau 10 Nombre d’articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine de la douleur, 1997-2002 et 2003-2008

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Papers</td>
<td>SI</td>
</tr>
<tr>
<td>United States</td>
<td>13 330</td>
<td>1,13</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>3 637</td>
<td>1,15</td>
</tr>
<tr>
<td>Germany</td>
<td>2 450</td>
<td>0,81</td>
</tr>
<tr>
<td>Canada</td>
<td>1 964</td>
<td>1,28</td>
</tr>
<tr>
<td>Japan</td>
<td>2 268</td>
<td>0,71</td>
</tr>
<tr>
<td>Italy</td>
<td>1 378</td>
<td>0,97</td>
</tr>
<tr>
<td>France</td>
<td>1 726</td>
<td>0,78</td>
</tr>
<tr>
<td>Australia</td>
<td>1 087</td>
<td>1,13</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1 106</td>
<td>1,28</td>
</tr>
<tr>
<td>Turkey</td>
<td>476</td>
<td>1,86</td>
</tr>
<tr>
<td>Sweden</td>
<td>1 421</td>
<td>2,09</td>
</tr>
<tr>
<td>China</td>
<td>346</td>
<td>0,28</td>
</tr>
<tr>
<td>Spain</td>
<td>724</td>
<td>0,72</td>
</tr>
<tr>
<td>Denmark</td>
<td>687</td>
<td>1,98</td>
</tr>
<tr>
<td>Switzerland</td>
<td>601</td>
<td>0,98</td>
</tr>
<tr>
<td>Brazil</td>
<td>297</td>
<td>0,64</td>
</tr>
<tr>
<td>Belgium</td>
<td>501</td>
<td>1,10</td>
</tr>
<tr>
<td>Israel</td>
<td>503</td>
<td>1,16</td>
</tr>
<tr>
<td>Austria</td>
<td>520</td>
<td>1,60</td>
</tr>
<tr>
<td>Finland</td>
<td>596</td>
<td>1,82</td>
</tr>
</tbody>
</table>

World 34 974 1,00 - 1,06 0,97 46 410 1,00 - 1,00 0,96

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 18 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine de la douleur, 1997-2002 et 2003-2008

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 19 Réseau de collaboration des établissements canadiens dans le domaine de la douleur, 1997-2008 (5 publications conjointes ou plus)

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
7 INITIATIVES STRATÉGIQUES CONJOINTES AVEC LES IRSC

7.1 Médecine régénérative

Malgré le fait que les résultats de recherche du Canada en médecine régénérative ont presque triplé entre les périodes 1997-2002 et 2003-2008, son rang est demeuré stable (8e position), puisque les résultats des autres pays ont connu une croissance comparable (Tableau 11). L’indice de spécialisation du Canada dans le domaine est passé de 0,79 à 0,87, mais son activité relative demeure toujours sous la moyenne mondiale. Par contre, son impact scientifique est nettement supérieur à la moyenne mondiale, tant pour les citations reçues (MCR) que pour l’impact des revues (FIRM). En 2003-2008, les pays qui avaient un impact et un indice de spécialisation élevés dans ce domaine sont les États-Unis, le Royaume-Uni, les Pays-Bas, la Suède, la Suisse, Israël et Singapour (Figure 20). Le taux de collaboration internationale du Canada est l’un des plus élevés des pays figurant au Tableau 11. Étant donné le nombre restreint d’articles, le réseau de collaboration entre établissements est moins dense (Figure 21) que pour bon nombre des autres domaines examinés dans le présent rapport. Les établissements canadiens les plus importants du réseau de collaboration sont le Princess Margaret Hospital, l’Université de Toronto, le Toronto General Hospital, l’Université de la Colombie-Britannique et l’Université de Calgary (Figure 21).

Tableau 11 Nombre d’articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine de la médecine régénérative, 1997-2002 et 2003-2008

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Papers</td>
<td>SI</td>
<td>Collabo</td>
<td>ARC</td>
<td>ARIF</td>
<td>Papers</td>
<td>SI</td>
<td>Collabo</td>
</tr>
<tr>
<td>United States</td>
<td>3 903</td>
<td>1,14</td>
<td>16,7%</td>
<td>1,51</td>
<td>1,12</td>
<td>10 636</td>
<td>1,25</td>
<td>24,5%</td>
</tr>
<tr>
<td>Japan</td>
<td>1 221</td>
<td>1,32</td>
<td>14,2%</td>
<td>0,75</td>
<td>0,75</td>
<td>3 029</td>
<td>1,41</td>
<td>17,0%</td>
</tr>
<tr>
<td>Germany</td>
<td>1 182</td>
<td>1,35</td>
<td>27,9%</td>
<td>1,09</td>
<td>0,85</td>
<td>2 792</td>
<td>1,30</td>
<td>37,5%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>735</td>
<td>0,80</td>
<td>29,1%</td>
<td>1,32</td>
<td>0,99</td>
<td>2 282</td>
<td>1,01</td>
<td>37,0%</td>
</tr>
<tr>
<td>Italy</td>
<td>849</td>
<td>2,06</td>
<td>25,9%</td>
<td>1,20</td>
<td>0,91</td>
<td>1 751</td>
<td>1,48</td>
<td>37,1%</td>
</tr>
<tr>
<td>China</td>
<td>106</td>
<td>0,30</td>
<td>25,5%</td>
<td>0,76</td>
<td>0,70</td>
<td>1 540</td>
<td>0,71</td>
<td>23,0%</td>
</tr>
<tr>
<td>France</td>
<td>609</td>
<td>0,96</td>
<td>26,4%</td>
<td>1,20</td>
<td>0,96</td>
<td>1 184</td>
<td>0,77</td>
<td>41,1%</td>
</tr>
<tr>
<td>Canada</td>
<td>350</td>
<td>0,79</td>
<td>38,9%</td>
<td>1,54</td>
<td>1,13</td>
<td>1 086</td>
<td>0,87</td>
<td>41,9%</td>
</tr>
<tr>
<td>South Korea</td>
<td>114</td>
<td>0,67</td>
<td>16,7%</td>
<td>0,76</td>
<td>0,70</td>
<td>992</td>
<td>1,31</td>
<td>23,9%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>354</td>
<td>1,42</td>
<td>33,6%</td>
<td>1,34</td>
<td>1,06</td>
<td>959</td>
<td>1,41</td>
<td>43,7%</td>
</tr>
<tr>
<td>Australia</td>
<td>207</td>
<td>0,74</td>
<td>28,0%</td>
<td>1,09</td>
<td>0,89</td>
<td>679</td>
<td>0,84</td>
<td>42,4%</td>
</tr>
<tr>
<td>Sweden</td>
<td>217</td>
<td>1,10</td>
<td>41,9%</td>
<td>1,40</td>
<td>0,96</td>
<td>639</td>
<td>1,32</td>
<td>48,7%</td>
</tr>
<tr>
<td>Spain</td>
<td>344</td>
<td>1,18</td>
<td>22,4%</td>
<td>1,17</td>
<td>0,83</td>
<td>635</td>
<td>0,69</td>
<td>38,3%</td>
</tr>
<tr>
<td>Switzerland</td>
<td>219</td>
<td>1,23</td>
<td>50,2%</td>
<td>1,40</td>
<td>0,99</td>
<td>615</td>
<td>1,25</td>
<td>63,9%</td>
</tr>
<tr>
<td>Israel</td>
<td>149</td>
<td>1,19</td>
<td>40,9%</td>
<td>1,96</td>
<td>1,06</td>
<td>506</td>
<td>1,62</td>
<td>39,3%</td>
</tr>
<tr>
<td>Singapore</td>
<td>29</td>
<td>0,66</td>
<td>37,9%</td>
<td>1,22</td>
<td>0,71</td>
<td>389</td>
<td>2,17</td>
<td>40,1%</td>
</tr>
<tr>
<td>Belgium</td>
<td>133</td>
<td>1,01</td>
<td>42,1%</td>
<td>1,41</td>
<td>0,99</td>
<td>355</td>
<td>0,94</td>
<td>50,1%</td>
</tr>
<tr>
<td>Austria</td>
<td>199</td>
<td>2,12</td>
<td>35,2%</td>
<td>0,92</td>
<td>0,81</td>
<td>346</td>
<td>1,34</td>
<td>50,6%</td>
</tr>
<tr>
<td>Taiwan</td>
<td>65</td>
<td>0,51</td>
<td>10,8%</td>
<td>0,90</td>
<td>0,86</td>
<td>317</td>
<td>0,66</td>
<td>18,9%</td>
</tr>
<tr>
<td>Brazil</td>
<td>62</td>
<td>0,46</td>
<td>27,4%</td>
<td>0,96</td>
<td>0,79</td>
<td>250</td>
<td>0,46</td>
<td>34,0%</td>
</tr>
</tbody>
</table>

World | 10 105 | 1,00 | - | 1,11 | 0,90 | 27 135 | 1,00 | - | 1,38 | 1,09 |

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 20 Diagrammes de dispersion de la moyenne des citations relatives et de l'indice de spécialisation des 20 pays les plus productifs dans le domaine de la médecine régénérative, 1997-2002 et 2003-2008

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 21 Réseau de collaboration des établissements canadiens dans le domaine de la médecine régénérative, 1997-2008 (5 publications conjointes ou plus)

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
7.2 Nanomédecine

Le domaine de la nanomédecine a connu une croissance fulgurante dans le monde entier depuis le début de la période étudiée, passant de 936 articles entre 1997 et 2002 à 25 974 articles entre 2003 et 2008 (Tableau 12). Bien que le rang du Canada ait beaucoup progressé entre ces deux périodes au chapitre du nombre de publications (de 14e au 8e rang), il demeure encore en deçà de la plupart des autres domaines à l'étude dans le présent rapport. Comme on pouvait s'y attendre, le pays demeure sous-spécialisé dans ce domaine, même si son indice de spécialisation s'est considérablement accru pour passer de 0,44 en 1997-2008 à 0,77 en 2003-2008. En outre, l'impact scientifique des articles canadiens en nanomédecine a progressé encore davantage et s'approche maintenant de la moyenne mondiale. Il est intéressant de souligner l'impact scientifique et la spécialisation élevés des États-Unis, de l'Allemagne, de la Suisse et d'Israël, ainsi que l'impact relativement faible de pays qui affichent par ailleurs un indice de spécialisation élevé, à savoir la Chine, la Corée du Sud et Taïwan (voir également la Figure 22). Le tableau démontre aussi que les activités de collaboration internationale des chercheurs canadiens sont moins intensives que celles d'autres pays plus grands. La Figure 23 montre que les établissements canadiens les plus importants sont, en ordre décroissant, l'Université de la Colombie-Britannique, l'Université de Toronto, l'Université de l'Alberta, le Conseil national de recherches du Canada et l'Université McGill.

Tableau 12 Nombre d'articles, indice de spécialisation, collaboration internationale et impact scientifique des 20 pays les plus actifs dans le domaine de la nanomédecine, 1997-2002 et 2003-2008

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Papers</td>
<td>SI</td>
<td>Collabo</td>
<td>ARC</td>
<td>ARIF</td>
<td>Papers</td>
<td>SI</td>
<td>Collabo</td>
</tr>
<tr>
<td>United States</td>
<td>388</td>
<td>1,22</td>
<td>19,1%</td>
<td>3,23</td>
<td>1,63</td>
<td>10 375</td>
<td>1,27</td>
<td>20,5%</td>
</tr>
<tr>
<td>China</td>
<td>90</td>
<td>2,74</td>
<td>15,6%</td>
<td>1,53</td>
<td>0,83</td>
<td>3 252</td>
<td>1,57</td>
<td>22,0%</td>
</tr>
<tr>
<td>Germany</td>
<td>83</td>
<td>1,03</td>
<td>43,4%</td>
<td>2,76</td>
<td>1,43</td>
<td>2 151</td>
<td>1,05</td>
<td>50,0%</td>
</tr>
<tr>
<td>Japan</td>
<td>87</td>
<td>1,01</td>
<td>23,0%</td>
<td>1,22</td>
<td>1,18</td>
<td>2 093</td>
<td>1,01</td>
<td>25,6%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>53</td>
<td>0,62</td>
<td>35,8%</td>
<td>4,64</td>
<td>1,45</td>
<td>1 501</td>
<td>0,70</td>
<td>45,0%</td>
</tr>
<tr>
<td>France</td>
<td>53</td>
<td>0,90</td>
<td>47,2%</td>
<td>2,11</td>
<td>1,21</td>
<td>1 257</td>
<td>0,85</td>
<td>49,5%</td>
</tr>
<tr>
<td>South Korea</td>
<td>20</td>
<td>1,27</td>
<td>40,0%</td>
<td>1,59</td>
<td>1,45</td>
<td>1 254</td>
<td>1,73</td>
<td>27,0%</td>
</tr>
<tr>
<td>Canada</td>
<td>18</td>
<td>0,44</td>
<td>33,3%</td>
<td>1,59</td>
<td>1,39</td>
<td>919</td>
<td>0,77</td>
<td>39,0%</td>
</tr>
<tr>
<td>India</td>
<td>33</td>
<td>1,59</td>
<td>15,2%</td>
<td>1,41</td>
<td>1,62</td>
<td>848</td>
<td>1,15</td>
<td>19,3%</td>
</tr>
<tr>
<td>Italy</td>
<td>41</td>
<td>1,08</td>
<td>39,0%</td>
<td>2,63</td>
<td>1,37</td>
<td>792</td>
<td>0,70</td>
<td>48,4%</td>
</tr>
<tr>
<td>Taiwan</td>
<td>30</td>
<td>2,54</td>
<td>13,3%</td>
<td>1,13</td>
<td>1,09</td>
<td>648</td>
<td>1,41</td>
<td>15,6%</td>
</tr>
<tr>
<td>Spain</td>
<td>21</td>
<td>0,78</td>
<td>57,1%</td>
<td>1,04</td>
<td>1,94</td>
<td>640</td>
<td>0,73</td>
<td>48,4%</td>
</tr>
<tr>
<td>Switzerland</td>
<td>20</td>
<td>1,21</td>
<td>50,0%</td>
<td>1,60</td>
<td>1,02</td>
<td>560</td>
<td>1,19</td>
<td>49,8%</td>
</tr>
<tr>
<td>Singapore</td>
<td>10</td>
<td>2,44</td>
<td>40,0%</td>
<td>1,50</td>
<td>1,08</td>
<td>548</td>
<td>3,20</td>
<td>31,8%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>19</td>
<td>0,82</td>
<td>42,1%</td>
<td>1,94</td>
<td>2,32</td>
<td>503</td>
<td>0,77</td>
<td>50,9%</td>
</tr>
<tr>
<td>Australia</td>
<td>15</td>
<td>0,58</td>
<td>46,7%</td>
<td>2,27</td>
<td>1,37</td>
<td>404</td>
<td>0,53</td>
<td>48,8%</td>
</tr>
<tr>
<td>Sweden</td>
<td>12</td>
<td>0,66</td>
<td>33,3%</td>
<td>2,22</td>
<td>1,58</td>
<td>394</td>
<td>0,85</td>
<td>48,0%</td>
</tr>
<tr>
<td>Israel</td>
<td>9</td>
<td>0,78</td>
<td>11,1%</td>
<td>1,60</td>
<td>1,83</td>
<td>328</td>
<td>1,10</td>
<td>33,8%</td>
</tr>
<tr>
<td>Belgium</td>
<td>5</td>
<td>0,41</td>
<td>80,0%</td>
<td>0,60</td>
<td>1,80</td>
<td>258</td>
<td>0,71</td>
<td>55,4%</td>
</tr>
<tr>
<td>Brazil</td>
<td>8</td>
<td>0,64</td>
<td>37,5%</td>
<td>3,40</td>
<td>1,45</td>
<td>243</td>
<td>0,47</td>
<td>37,0%</td>
</tr>
</tbody>
</table>

World | 936 | 1,00 | - | 2,43 | 1,42 | 25 974 | 1,00 | - | 2,51 | 1,83 |

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 22 Diagrammes de dispersion de la moyenne des citations relatives et de l’indice de spécialisation des 20 pays les plus productifs dans le domaine de la nanomédecine, 1997-2002 et 2003-2008

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 23 Réseau de collaboration des établissements canadiens dans le domaine de la nanomédecine, 1997-2008 (3 publications conjointes ou plus)

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
7.3 Épigénétique

Même si les résultats de recherche du Canada en épigénétique ont plus que triplé entre les périodes 1997-2002 et 2003-2008, le pays est passé du sixième au septième rang, tandis que : 1) le nombre d’articles publiés dans le monde dans ce domaine a presque quadruplé, et que 2) les résultats de recherche de la Chine dans ce domaine sont passés de 99 articles en 1997-2002 à 1 523 articles en 2003-2008 (Tableau 13). Dans la même veine, le Canada n’est plus considéré comme un pays spécialisé en épigénétique, avec un indice de spécialisation qui a chuté de 1,13 à 1,00. Par contre, son impact scientifique a réagi différemment : auparavant inférieur à la moyenne mondiale, il se situe maintenant bien au-dessus pour les citations reçues (MCR), et au même niveau pour l’impact des revues (FIRM). Pour la période 2003-2008, les pays affichant un indice de spécialisation et un impact scientifique supérieurs à la moyenne en épigénétique sont les États-Unis, l’Allemagne, le Royaume-Uni, les Pays-Bas, la Suisse et l’Autriche (Figure 24). Le taux de collaboration internationale des chercheurs canadiens est comparable à celui des chercheurs d’autres pays de la même taille, et plus élevé que pour la plupart des domaines examinés dans le présent rapport. Étant donné le nombre restreint d’articles, le réseau de collaboration entre établissements est moins dense (Figure 25) que pour bon nombre des autres domaines examinés ici. Les établissements canadiens les plus importants du réseau de collaboration sont, en ordre décroissant, l’Université McGill, l’Université de Toronto, le Hospital for Sick Children, l’Université de la Colombie-Britannique et l’Université de Western Ontario.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Papers</td>
<td>SI</td>
</tr>
<tr>
<td>United States</td>
<td>3 023</td>
<td>1,40</td>
</tr>
<tr>
<td>Japan</td>
<td>764</td>
<td>1,31</td>
</tr>
<tr>
<td>Germany</td>
<td>607</td>
<td>1,10</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>812</td>
<td>1,41</td>
</tr>
<tr>
<td>China</td>
<td>99</td>
<td>0,44</td>
</tr>
<tr>
<td>France</td>
<td>451</td>
<td>1,12</td>
</tr>
<tr>
<td>Canada</td>
<td>317</td>
<td>1,13</td>
</tr>
<tr>
<td>Italy</td>
<td>236</td>
<td>0,91</td>
</tr>
<tr>
<td>Spain</td>
<td>170</td>
<td>0,92</td>
</tr>
<tr>
<td>Netherlands</td>
<td>192</td>
<td>1,22</td>
</tr>
<tr>
<td>South Korea</td>
<td>89</td>
<td>0,83</td>
</tr>
<tr>
<td>Australia</td>
<td>229</td>
<td>1,30</td>
</tr>
<tr>
<td>Switzerland</td>
<td>167</td>
<td>1,49</td>
</tr>
<tr>
<td>Sweden</td>
<td>128</td>
<td>1,03</td>
</tr>
<tr>
<td>Israel</td>
<td>73</td>
<td>0,92</td>
</tr>
<tr>
<td>Taiwan</td>
<td>39</td>
<td>0,49</td>
</tr>
<tr>
<td>Austria</td>
<td>65</td>
<td>1,10</td>
</tr>
<tr>
<td>Belgium</td>
<td>81</td>
<td>0,98</td>
</tr>
<tr>
<td>Denmark</td>
<td>59</td>
<td>0,93</td>
</tr>
<tr>
<td>Russia</td>
<td>64</td>
<td>0,29</td>
</tr>
</tbody>
</table>

| World | 6 375 | 1,00 | - | 1,96 | 1,58 | 22 895 | 1,00 | - | 1,79 | 1,47 |

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 24 Diagrammes de dispersion de la moyenne des citations relatives et de l'indice de spécialisation des 20 pays les plus productifs dans le domaine de l'épigénétique, 1997-2002 et 2003-2008

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
Figure 25 Réseau de collaboration des établissements canadiens dans le domaine de l’épigénétique, 1997-2008 (4 publications conjointes ou plus)

Source : Observatoire des sciences et des technologies, BDBC (à jour en date de juillet 2009), bases de données Web of Science et Medline.
CONCLUSION

À l’aide d’une méthode fondée sur le Medical Subject Headings (MeSH) de la National Library of Medicine des États-Unis et sur une sélection de revues spécialisées, le présent rapport bibliométrique analyse l’évolution, sur la période 1997-2008, des tendances de la recherche qui touche l’INSMT, l’un des IRSC. Plus précisément, les domaines de recherche examinés comprenaient les quatre principaux domaines inscrits dans le mandat de l’INSMT (la neuroscience, la santé mentale, les toxicomanies et les troubles sensoriels et des communications), ainsi que trois domaines de recherche précis (la neuroimagerie, les cellules souches neurales et la douleur) et trois domaines plus vastes touchant tous les IRSC et dans lesquels l’INSMT joue un rôle de premier plan (la médecine régénérative, la nanomédecine et l’épigénétique). Les résultats de recherche, la spécialisation, l’impact scientifique et le taux de collaboration des chercheurs canadiens sont présentés pour chacun de ces domaines, puis comparés à ceux de chercheurs des 20 pays les plus productifs.

Principaux domaines relatifs au mandat de l’INSMT – neuroscience, santé mentale, toxicomanie et troubles sensoriels et des communications

Le présent rapport témoigne du fait que le Canada est un chef de file dans tous les principaux domaines de l’INSMT.

Au chapitre des résultats de recherche (nombre d’articles), les quatre domaines affichent un rang relativement élevé et stable par rapport aux autres pays : le Canada se classe toujours entre la 4e et la 6e position dans tous les domaines, pour les deux périodes observées. Bien que les résultats bibliométriques du Canada dans d’autres domaines scientifiques n’aient pas été directement mesurés dans la présente étude, cette position semble élevée par rapport aux statistiques de R et D publiées par l’Organisation de coopération et de développement économiques (OCDE). Selon le profil statistique dressé par l’OCDE des vingt pays en tête de chaque domaine analysé ici, le Canada arrive au 11e rang pour le pourcentage des dépenses en R et D dans le produit intérieur brut (PIB), 9e pour le nombre de chercheurs par rapport à la population active occupée et 11e pour les familles de brevets triadiques. Ainsi, le fait que les résultats de recherche dans les principaux domaines de l’INSMT analysés ici placent le pays à la 4e, 5e ou 6e position laisse entendre que la recherche dans ces domaines est relativement intense pour le Canada.

En ce qui concerne l’impact scientifique relatif, les publications canadiennes se sont classées bien au-dessus de la moyenne mondiale dans trois de ces domaines (neuroscience, santé mentale et troubles sensoriels et des communications) pour ce qui est des citations reçues (MCR) et de l’impact des revues (FIRM), et ce, pour toute la période 1997-2008 (2e et 4e rang pour la MCR). Dans le domaine de la recherche sur les toxicomanies, l’impact scientifique des publications canadiennes correspondait à la moyenne mondiale pour la période 1997-2002, mais s’est accru pour la période 2003-2008. Ces résultats suggèrent qu’au Canada, la recherche atteint un niveau d’excellence élevé, parfois stable et parfois croissant, dans les principaux domaines de l’INSMT.

L’analyse des données sur la collaboration révèle que les chercheurs canadiens bénéficient de bons réseaux dans les principaux domaines de l’INSMT étudiés dans le présent rapport, avec de plus en plus de collaborateurs internationaux dans les quatre domaines pour la période 2003-2008.

Sous-domaines du mandat de l’INSMT – neuroimagerie, cellules souches neurales et douleur

Dans l’ensemble, les résultats de recherche (nombre d’articles) pour ces sous-domaines concordaient avec les positions relativement élevées des principaux domaines de l’INSMT observés précédemment. L’impact scientifique (MCR et FIRM) était même généralement plus important que celui observé pour les principaux

Les chercheurs canadiens bénéficient de bons réseaux dans ces sous-domaines; celui des cellules souches neurales affiche un taux relativement élevé de collaboration internationale (50% des publications canadiennes ont été co-signées par des auteurs étrangers). Comme c'est le cas pour les principaux domaines de l'INSMT, les sous-domaines de la neuroimagerie et de la douleur ont vu leur taux de collaboration internationale augmenter avec le temps, tandis que celui des cellules souches neurales est demeuré stable, à un niveau relativement élevé.

Domaines couverts par les IRSC – médecine régénérative, nanomédecine et épigénétique

Étant donné la nature embryonnaire et émergente de ces domaines de recherche multidisciplinaires et interthématiques, les résultats de recherche sont restreints dans l'ensemble comparativement à ceux observés dans les domaines de recherche bien établis de l'INSMT. Il est donc essentiel d'interpréter ces résultats bibliométriques avec prudence. À l'exception du domaine de la nanomédecine en 1997-2002 (lorsque le peu de publications pouvait invalider les comparaisons), les résultats de recherche du Canada dans l'ensemble se situeraient toujours entre le 6ème et le 8ème rang des 20 premiers pays pour ces trois domaines et pour les deux périodes analysées. Néanmoins, l'indice de spécialisation (IS) du Canada est généralement demeuré en dessous de la moyenne mondiale en médecine régénérative et en nanomédecine, et dans la moyenne mondiale en épigénétique.

SOMMAIRE

Le présent rapport bibliométrique vient établir clairement que les chercheurs canadiens excellent sur la scène internationale dans les quatre domaines (neuroscience, santé mentale, toxicomanie et troubles sensoriels et des communications) et les trois sous-domaines (neuroimagerie, cellules souches neurales et douleur) qui font partie du mandat de l'INSMT. Dans ces domaines, la position relative du Canada pour les

En ce qui concerne les domaines émergents couverts par les IRSC et dans lesquels l’INSMT joue un rôle de premier plan (médecine régénérative, nanomédecine et épigénétique), il n’est pas étonnant de constater que les résultats de recherche du Canada sont généralement plus faibles que ceux relevés dans les domaines établis de l’INSMT. Dans ces trois domaines, le Canada occupe une position inférieure ou égale à la moyenne mondiale en ce qui a trait à la spécialisation, mais demeure néanmoins au-dessus de la moyenne au chapitre de l’impact scientifique en médecine régénérative et en épigénétique. Les résultats scientifiques, la spécialisation et l’impact scientifique dans le domaine de la nanomédecine ont considérablement augmenté ces dernières années et s’approchent aujourd’hui de la moyenne mondiale.
NOTE DE TRADUCTION

En raison de la difficulté de reproduire les tableaux et les graphiques du document original, seules les légendes des tableaux et des graphiques ont été traduites en français. Nous espérons que les équivalents qui suivent (donnés en ordre alphabétique en anglais) vous aideront dans la lecture du rapport.

Average of Relative Citations (ARC) = Moyenne des citations relatives (MCR)
Average relative impact factor (ARIF) = Facteur d’impact relatif moyen (FIRM)
Addiction = Toxicomanie
Epigenetics = Épigénétique
International collaboration rate = Taux de collaboration internationale
Inter-institutional collaboration rate = Taux de collaboration entre établissements
Mental Health = Santé mentale
Nanomedicine = Nanomédecine
Network analysis = Analyse du réseau
Neural Stem Cells = Cellules souches neurales
Neuroimaging = Neuroimagerie
Number of publications = Nombre de publications
Pain = Douleur
Regenerative Medicine = Médecine régénérative
Senses and Communication Disorders = Troubles sensoriels et des communications
Specialization index (SI) = Indice de spécialisation (IS)
NOTES EN FIN DE TEXTE

1 Loi sur les Instituts de recherche en santé du Canada – Projet de loi C13 :

2 Institut des neurosciences, de la santé mentale et des toxicomanies (INSMT) :

4 http://www.ncbi.nlm.nih.gov/pubmed

5 Pour plus de détails sur le schéma de classification, consultez la page suivante (en anglais seulement) :
http://www.nsf.gov/statistics/seind06/c5/c5s3.htm#sb1

ANNEXE 1. MESH TERMS, BY DOMAIN

Neuroscience
- Mental Disorders
- Nervous System
- Nervous System Diseases
- Neurology
- Neuropsychopharmacology
- Neurosciences
- Psychopharmacology

Neuroimaging
- Brain Mapping
- Diagnostic Imaging
- Diagnostic Techniques, Neurological
- Electroencephalography
- Magnetoencephalography
- Neuroradiography
- Transcranial Magnetic Stimulation

Neural Stem Cells
- Stem Cells (limited by "Neuroscience" MeSH—see above)

Mental Health
- Mental Disorders
- Mental Health
- Mental Health Services

Addiction
- Substance-Related Disorders
- Tobacco Use Cessation

Senses and Communication Disorders
- Gravity Sensing
- Sensation (except the "pleasure" subheading)
- Hearing
- Pain
- Proprioception
- Smell
- Taste
- Temperature Sense
- Touch
- Vision, Ocular
Pain
Pain

Regenerative Medicine
Adult Stem Cells
Bioartificial Organs
Embryonic Stem Cells
Fetal Stem Cells
Liver, Artificial
Multipotent Stem Cells
Organoids
Pancreas, Artificial
Pluripotent Stem Cells
Regenerative Medicine
Skin, Artificial
Stem Cell Transplantation
Tissue Engineering
Tissue Scaffolds
Tissue Therapy
Totipotent Stem Cells

Nanomedicine
Fullerenes
Lab-On-A-Chip Devices
Microfluidic Analytical Techniques
Microfluidics
Nanocapsules
Nanomedicine
Nanostructures
Nanotechnology

Epigenetics
Epigenesis, Genetic
DNA Methylation
ANNEXE 2. JOURNALS INCLUDED, BY DOMAIN

Neuroscience
ACTA NEUROBIOLOGIAE EXPERIMENTALIS
ACTA NEUROLOGICA
ACTA NEUROLOGICA BELGICA
ACTA NEUROLOGICA SCANDINAVICA
ACTA NEUROPATHOLOGICA
ACTA NEUROPSYCHIATRICA
ACTAS LUSO-ESPAÑOLAS DE NEUROLOGIA PSIQUIATRIA Y CIENCIAS AFINES
ACTIVITAS NERVOSA SUPERIOR
ACUPUNCTURE & ELECTRO-THERAPEUTICS RESEARCH
ADVANCES IN BEHAVIORAL PHARMACOLOGY
ADVANCES IN BIOCHEMICAL PSYCHOPHARMACOLOGY
ADVANCES IN NEUROLOGY
AGING NEUROPSYCHOLOGY AND COGNITION
AKTUELLE NEUROLOGIE
ALZHEIMER DISEASE & ASSOCIATED DISORDERS
ALZHEIMERS & DEMENTIA
ALZHEIMERS REPORTS
AMA ARCHIVES OF NEUROLOGY AND PSYCHIATRY
AMERICAN JOURNAL OF EEG TECHNOLOGY
AMERICAN JOURNAL OF ELECTRONEURODIAGNOSTIC TECHNOLOGY
AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS
AMERICAN JOURNAL OF NEURORADIOLOGY
AMYOTROPHIC LATERAL SCLEROSIS AND OTHER MOTOR NEURON DISORDERS
ANNALS OF INDIAN ACADEMY OF NEUROLOGY
ANNALS OF NEUROLOGY
ANNUAL REVIEW OF NEUROSCIENCE
APHASIOLOGY
APPLIED NEUROPHYSIOLOGY
APS JOURNAL
ARCHIVES ITALIENNES DE BIOLOGIE
ARCHIVES OF NEUROLOGY
ARCHIVES OF NEUROLOGY AND PSYCHIATRY
ARCHIVOS DE NEUROBIOLOGIA
ARQUIVOS DE NEURO-PSIQUIATRIA
AUTONOMIC NEUROSCIENCE-BASIC & CLINICAL
BAILLIERES CLINICAL NEUROLOGY
BEHAVIORAL AND BRAIN FUNCTIONS
BEHAVIORAL AND NEURAL BIOLOGY
BEHAVIORAL NEUROSCIENCE
BEHAVIOURAL BRAIN RESEARCH
BEHAVIOURAL NEUROLOGY
BEHAVIOURAL PHARMACOLOGY
BIOLOGICAL CYBERNETICS
BMC NEUROLOGY
BMC NEUROSCIENCE
BRAIN
BRAIN & DEVELOPMENT
<table>
<thead>
<tr>
<th>Journals</th>
<th>Titles</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAIN AND COGNITION</td>
<td>BRAIN AND LANGUAGE</td>
</tr>
<tr>
<td>BRAIN BEHAVIOR AND EVOLUTION</td>
<td>BRAIN CELL BIOLOGY</td>
</tr>
<tr>
<td>BRAIN DYSFUNCTION</td>
<td>BRAIN IMPAIRMENT</td>
</tr>
<tr>
<td>BRAIN INJURY</td>
<td>BRAIN PATHOLOGY</td>
</tr>
<tr>
<td>BRAIN RESEARCH</td>
<td>BRAIN RESEARCH BULLETIN</td>
</tr>
<tr>
<td>BRAIN RESEARCH PROTOCOLS</td>
<td>BRAIN RESEARCH REVIEWS</td>
</tr>
<tr>
<td>BRAIN STRUCTURE & FUNCTION</td>
<td>BRAIN TOPOGRAPHY</td>
</tr>
<tr>
<td>BRITISH JOURNAL OF NEUROSURGERY</td>
<td>CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES</td>
</tr>
<tr>
<td>CELL TRANSPLANTATION</td>
<td>CELLULAR AND MOLECULAR NEUROBIOLOGY</td>
</tr>
<tr>
<td>CEPHALALGIA</td>
<td>CEREBELLM</td>
</tr>
<tr>
<td>CEREBRAL CORTEX</td>
<td>CEREBROVASCULAR AND BRAIN METABOLISM REVIEWS</td>
</tr>
<tr>
<td>CEREBROVASCULAR DISEASES</td>
<td>CHILD NEUROPSYCHOLOGY</td>
</tr>
<tr>
<td>CHILDS BRAIN</td>
<td>CHILDS NERVOUS SYSTEM</td>
</tr>
<tr>
<td>CHRONOBIOLOGY INTERNATIONAL</td>
<td>CIRCULATION ET METABOLISME DU CERVEAU</td>
</tr>
<tr>
<td>CLINICAL AUTONOMIC RESEARCH</td>
<td>CLINICAL EEG AND NEUROSCIENCE</td>
</tr>
<tr>
<td>CLINICAL ELECTROENCEPHALOGRAPHY</td>
<td>CLINICAL JOURNAL OF PAIN</td>
</tr>
<tr>
<td>CLINICAL JOURNAL OF NEUROLOGY AND NEUROSURGERY</td>
<td>CLINICAL NEUROPATHOLOGY</td>
</tr>
<tr>
<td>CLINICAL NEUROPHYSIOLOGY</td>
<td>CLINICAL NEUROPSYCHOLOGY</td>
</tr>
<tr>
<td>CLINICAL NEUROSCIENCE</td>
<td>CLINICAL NEUROSCIENCE RESEARCH</td>
</tr>
<tr>
<td>CLINICAL NEUROSURGERY</td>
<td>CNS DRUG REVIEWS</td>
</tr>
<tr>
<td>CNS DRUGS</td>
<td>CNS NEUROSCIENCE & THERAPEUTICS</td>
</tr>
<tr>
<td>COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE</td>
<td>COGNITIVE AND BEHAVIORAL NEUROLOGY</td>
</tr>
<tr>
<td>COGNITIVE BRAIN RESEARCH</td>
<td>COMMUNICATIONS IN PSYCHOPHARMACOLOGY</td>
</tr>
<tr>
<td>CONCEPTS IN NEUROSCIENCE</td>
<td>CONFINIA CEPHALALGICA</td>
</tr>
<tr>
<td>CRC CRITICAL REVIEWS IN CLINICAL NEUROBIOLOGY</td>
<td>CRITICAL REVIEWS IN NEUROBIOLOGY</td>
</tr>
<tr>
<td>CRITICAL REVIEWS IN NEUROSURGERY</td>
<td></td>
</tr>
</tbody>
</table>
Analyse bibliométrique de la recherche de l'INSMT, 1997-2008

CURRENT ALZHEIMER RESEARCH
CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS
CURRENT NEUROPHARMACOLOGY
CURRENT NEUROVASCULAR RESEARCH
CURRENT OPINION IN NEUROBIOLOGY
CURRENT OPINION IN NEUROLOGY
CURRENT OPINION IN NEUROLOGY AND NEUROSURGERY
CURRENT PAIN AND HEADACHE REPORTS
CURRENT TREATMENT OPTIONS IN NEUROLOGY
DEMENTIA
DEMENTIA AND GERIATRIC COGNITIVE DISORDERS
DEVELOPMENTAL BRAIN DYSFUNCTION
DEVELOPMENTAL BRAIN RESEARCH
DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY
DEVELOPMENTAL NEUROBIOLOGY
DEVELOPMENTAL NEUROPSYCHOLOGY
DEVELOPMENTAL NEUROSCIENCE
DISCUSSIONS IN NEUROSCIENCE
DISEASES OF THE NERVOUS SYSTEM
DOULEUR ET ANALGESIE
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY
ELECTROMYOGRAPHY AND CLINICAL NEUROPHYSIOLOGY
ELECTROMYOGRAPHY AND MOTOR CONTROL-ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY
EPILEPSIA
EPILEPSIES
EPILEPSY RESEARCH
EPILEPTIC DISORDERS
EUROPEAN ARCHIVES OF PSYCHIATRY AND CLINICAL NEUROSCIENCE
EUROPEAN JOURNAL OF NEUROLOGY
EUROPEAN JOURNAL OF NEUROSCIENCE
EUROPEAN JOURNAL OF PAEDIATRIC NEUROLOGY
EUROPEAN JOURNAL OF PAIN
EUROPEAN JOURNAL OF PAIN-LONDON
EUROPEAN NEUROLOGY
EUROPEAN NEUROPSYCHOPHARMACOLOGY
EVOKED POTENTIALS-ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY
EXPERIMENTAL BRAIN RESEARCH
EXPERIMENTAL NEUROLOGY
FOCUS ON DEPRESSION AND ANXIETY
FOLIA NEUROPATHOLOGICA
FOLIA PSYCHIATRICA ET NEUROLOGICA JAPONICA
FRONTIERS IN NEUROENDOCRINOLOGY
FUNCTIONAL NEUROLOGY
GENES BRAIN AND BEHAVIOR
GIORNALE DI NEUROPSICHIATRIA DELL ETA EVOLUTIVA
GLIA
HEADACHE
HEADACHE QUARTERLY-CURRENT TREATMENT AND RESEARCH
HIPPOCAMPUS
HOMEOSTASIS IN HEALTH AND DISEASE
HUMAN BRAIN MAPPING
HUMAN NEUROBIOLOGY
IDEGGYOYGASZATI SZEMLE-CLINICAL NEUROSCIENCE
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING
INTELLECTUAL AND DEVELOPMENTAL DISABILITIES
INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS
INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY
INTERNATIONAL JOURNAL OF NEURORADIOLOGY
INTERNATIONAL JOURNAL OF NEUROSCIENCE
INTERNATIONAL PHARMACOPSYCHIATRY
INTERNATIONAL REVIEW OF NEUROBIOLOGY
INTERNATIONAL REVIEW OF RESEARCH IN MENTAL RETARDATION
INTERVENTIONAL NEURORADIOLOGY
INVERTEBRATE NEUROSCIENCE
ITALIAN JOURNAL OF NEUROLOGICAL SCIENCES
JAPANESE JOURNAL OF NEUROPSYCHOPHARMACOLOGY
JAPANESE JOURNAL OF PSYCHIATRY AND NEUROLOGY
JOURNAL DE PHYSIOLOGIE
JOURNAL OF ALZHEIMERS DISEASE
JOURNAL OF APPLIED RESEARCH IN INTELLECTUAL DISABILITIES
JOURNAL OF BIOLOGICAL RHYTHMS
JOURNAL OF BRAIN RESEARCH-JOURNAL FUR HIRNFORSCHUNG
JOURNAL OF BRAIN SCIENCE
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM
JOURNAL OF CHEMICAL NEUROANATOMY
JOURNAL OF CHILD AND ADOLESCENT PSYCHOPHARMACOLOGY
JOURNAL OF CHILD NEUROLOGY
JOURNAL OF CLINICAL AND EXPERIMENTAL NEUROPSYCHOLOGY
JOURNAL OF CLINICAL NEUROLOGY
JOURNAL OF CLINICAL NEUROPHYSIOLOGY
JOURNAL OF CLINICAL NEUROPSYCHOLOGY
JOURNAL OF CLINICAL NEUROSCIENCE
JOURNAL OF CLINICAL PSYCHOPHARMACOLOGY
JOURNAL OF COGNITIVE NEUROSCIENCE
JOURNAL OF COMPARATIVE NEUROLOGY
JOURNAL OF COMPUTATIONAL NEUROSCIENCE
JOURNAL OF EPILEPSY
JOURNAL OF HEADACHE AND PAIN
JOURNAL OF INTELLECTUAL DISABILITY RESEARCH
JOURNAL OF KOREAN NEUROSURGICAL SOCIETY
JOURNAL OF MENTAL DEFICIENCY RESEARCH
JOURNAL OF MOLECULAR NEUROSCIENCE
JOURNAL OF NERVOUS AND MENTAL DISEASE
JOURNAL OF NEURAL ENGINEERING
JOURNAL OF NEURAL TRANSMISSION
JOURNAL OF NEURAL TRANSMISSION-GENERAL SECTION
JOURNAL OF NEURAL TRANSMISSION-PARKINSONS DISEASE AND DEMENTIA SECTION
JOURNAL OF NEURAL TRANSMISSION-SUPPLEMENTUM
JOURNAL OF NEURAL TRANSPLANTATION & PLASTICITY
JOURNAL OF NEUROBIOLOGY
<table>
<thead>
<tr>
<th>Neurorough Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALYSE BIBLIOMÉTRIQUE DE LA RECHERCHE DE L’INSMT, 1997-2008</td>
</tr>
<tr>
<td>NEURO-ONCOLOGY</td>
</tr>
<tr>
<td>NEURO-OPHTHALMOLOGY</td>
</tr>
<tr>
<td>NEURO-ORTHOPEDICS</td>
</tr>
<tr>
<td>NEUROPEDIATRIE</td>
</tr>
<tr>
<td>NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY</td>
</tr>
<tr>
<td>NEUROPEDIATRICS</td>
</tr>
<tr>
<td>NEUROPEPTIDES</td>
</tr>
<tr>
<td>NEUROPHARMACOLOGY</td>
</tr>
<tr>
<td>NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY</td>
</tr>
<tr>
<td>NEUROPHYSIOLOGY</td>
</tr>
<tr>
<td>NEUROPROTOCOLS-A COMPANION TO METHODS IN NEUROSCIENCES</td>
</tr>
<tr>
<td>NEUROPSYCHIATRIE</td>
</tr>
<tr>
<td>NEUROPSYCHIATRIE DE L'ENFANCE ET DE L ADOLESCENCE</td>
</tr>
<tr>
<td>NEUROPSYCHIATRY NEUROPSYCHOLOGY AND BEHAVIORAL NEUROLOGY</td>
</tr>
<tr>
<td>NEUROPSYCHOBIOLOGY</td>
</tr>
<tr>
<td>NEUROPSYCHOLOGIA</td>
</tr>
<tr>
<td>NEUROPSYCHOLOGICAL REHABILITATION</td>
</tr>
<tr>
<td>NEUROPSYCHOLOGY</td>
</tr>
<tr>
<td>NEUROPSYCHOLOGY REVIEW</td>
</tr>
<tr>
<td>NEUROPSYCHOPHARMACOLOGY</td>
</tr>
<tr>
<td>NEUROQUANTATOLOGY</td>
</tr>
<tr>
<td>NEURORADIOLOGY</td>
</tr>
<tr>
<td>NEUROREHABILITATION</td>
</tr>
<tr>
<td>NEUROREHABILITATION AND NEURAL REPAIR</td>
</tr>
<tr>
<td>NEUROREPORT</td>
</tr>
<tr>
<td>NEUROSCIENCE</td>
</tr>
<tr>
<td>NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS</td>
</tr>
<tr>
<td>NEUROSCIENCE LETTERS</td>
</tr>
<tr>
<td>NEUROSCIENCE RESEARCH</td>
</tr>
<tr>
<td>NEUROSCIENCE RESEARCH COMMUNICATIONS</td>
</tr>
<tr>
<td>NEUROSCIENCES</td>
</tr>
<tr>
<td>NEUROSCIENCES RESEARCH PROGRAM BULLETIN</td>
</tr>
<tr>
<td>NEUROSCIENCES-JAPAN</td>
</tr>
<tr>
<td>NEUROSCIENTIST</td>
</tr>
<tr>
<td>NEUROSIGNALS</td>
</tr>
<tr>
<td>NEUROSURGERY</td>
</tr>
<tr>
<td>NEUROSURGERY CLINICS OF NORTH AMERICA</td>
</tr>
<tr>
<td>NEUROSURGERY QUARTERLY</td>
</tr>
<tr>
<td>NEUROSURGICAL FOCUS</td>
</tr>
<tr>
<td>NEUROSURGICAL REVIEW</td>
</tr>
<tr>
<td>NEUROTHERAPEUTICS</td>
</tr>
<tr>
<td>NEUROTOXICITY RESEARCH</td>
</tr>
<tr>
<td>NEUROTOXICOLOGY</td>
</tr>
<tr>
<td>NEUROTOXICOLOGY AND TERATOLOGY</td>
</tr>
<tr>
<td>NEUROUROLOGY AND URODYNAMICS</td>
</tr>
<tr>
<td>NIMHANS JOURNAL</td>
</tr>
<tr>
<td>NUTRITIONAL NEUROSCIENCE</td>
</tr>
<tr>
<td>PAIN</td>
</tr>
<tr>
<td>PAIN CLINIC</td>
</tr>
<tr>
<td>PAIN FORUM</td>
</tr>
<tr>
<td>PAIN PHYSICIAN</td>
</tr>
</tbody>
</table>
PAIN REVIEWS
PARAPLEGIA
PARKINSONISM & RELATED DISORDERS
PEDIATRIC NEUROLOGY
PEDIATRIC NEUROSCIENCE
PEDIATRIC NEUROSURGERY
PERSPECTIVES IN NEUROLOGICAL SURGERY
PERSPECTIVES ON DEVELOPMENTAL NEUROBIOLOGY
PHARMACOPSYCHIATRIA
PHARMACOPSYCHIATRY
PHARMAKOPSYCHIATRIE NEURO-PSYCHOPHARMAKOLOGIE
PHYSIOLOGIA BOHEMOSLOVACA
PROGRESS IN BRAIN RESEARCH
PROGRESS IN CLINICAL NEUROPHYSIOLOGY
PROGRESS IN NEUROBIOLOGY
PROGRESS IN NEUROENDOCRINIMMUNOLOGY
PROGRESS IN NEUROPATHOLOGY
PROGRESS IN NEURO-PSYCHOPHARMACOLOGY
PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY
PROGRESS IN PSYCHOBIOLOGY AND PHYSIOLOGICAL PSYCHOLOGY
PSN-PSYCHIATRIE SCIENCES HUMAINES NEUROSCIENCES
PSYCHIATRIC GENETICS
PSYCHIATRY AND CLINICAL NEUROSCIENCES
PSYCHIATRY RESEARCH-NEUROIMAGING
PSYCHOLOGIE & NEUROPSYCHIATRIE DU VIEILLISSEMENT
PSYCHONEUROENDOCRINOLOGY
PSYCHOPHARMACOLOGY
PSYCHOPHARMACOLOGY BULLETIN
PURINERGIC SIGNALLING
RESEARCH IN DEVELOPMENTAL DISABILITIES
RESTORATIVE NEUROLOGY AND NEUROSCIENCE
REVIEWS IN THE NEUROSCIENCES
REVISTA DE NEUROLOGIA
REVISTA ECUATORIANA DE NEUROLOGIA
REVUE D ELECTROENCEPHALOGRAPHIE ET DE NEUROPHYSIOLOGIE CLINIQUE
REVUE DE NEUROPSYCHIATRIE INFANTILE ET D HYGIENE MENTALE DE L ENFANCE
REVUE NEUROLOGIQUE
RIVISTA DI NEURORADIOLOGIA
SEIZURE
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY
SEMINARS IN NEUROLOGY
SEMINARS IN THE NEUROSCIENCES
SLEEP
SLEEP AND BIOLOGICAL RHYTHMS
SLEEP MEDICINE
SLEEP MEDICINE REVIEWS
SOCIAL COGNITIVE AND AFFECTIVE NEUROSCIENCE
SOCIAL NEUROSCIENCE
SOMATOSENSORY AND MOTOR RESEARCH
SOMATOSENSORY RESEARCH
STEREOTACTIC AND FUNCTIONAL NEUROSURGERY
STROKE
SURGICAL NEUROLOGY
SYNAPSE
TECHNIQUES IN NEUROSURGERY
TOPICS IN STROKE REHABILITATION
TRANSACTIONS OF THE AMERICAN NEUROLOGICAL ASSOCIATION
TRENDS IN NEUROSCIENCES
TURKISH NEUROSURGERY
VISION RESEARCH
VISUAL NEUROSCIENCE
ZEITSCHRIFT FUR DIE GESAMTE NEUROLOGIE UND PSYCHIATRIE
ZENTRALBLATT FUR NEUROCHIRURGIE

Neuroimaging
AMERICAN JOURNAL OF NEURORADIOLOGY
INTERNATIONAL JOURNAL OF NEURORADIOLOGY
INTERVENTIONAL NEURORADIOLOGY
JOURNAL OF NEUROIMAGING
JOURNAL OF NEURORADIOLOGY
KLINISCHE NEURORADIOLOGIE
KLINISCHE NEURORADIOLOGIE
NEUROIMAGING CLINICS OF NORTH AMERICA
NEURORADIOLOGY
PSYCHIATRY RESEARCH-NEUROIMAGING
RIVISTA DI NEURORADIOLOGIA

Mental Health
ACTA PSYCHIATRICA SCANDINAVICA
ACTAS ESPANOLAS DE PSIQUIATRIA
ACTAS LUSO-ESPAÑOLAS DE NEUROLOGIA PSIQUIATRIA Y CIENCIAS AFINES
ADVANCES IN PSYCHOSOMATIC MEDICINE
ALZHEIMER DISEASE & ASSOCIATED DISORDERS
AMERICAN JOURNAL OF ALZHEIMERS DISEASE AND OTHER DEMENTIAS
AMERICAN JOURNAL OF GERIATRIC PSYCHIATRY
AMERICAN JOURNAL OF ORTHOPSYCHIATRY
AMERICAN JOURNAL OF PSYCHIATRY
AMERICAN JOURNAL OF PSYCHOTHERAPY
AMERICAN JOURNAL ON MENTAL RETARDATION
ANXIETY STRESS AND COPING
ARCHIVES OF GENERAL PSYCHIATRY
ARCHIVES OF PSYCHIATRIC NURSING
ARCHIVES OF WOMENS MENTAL HEALTH
ARQUIVOS DE Neuro-PSiquiatria
AUSTRALASIAN PSYCHIATRY
AUSTRALIAN AND NEW ZEALAND JOURNAL OF PSYCHIATRY
AUTISM
BEHAVIORAL MEDICINE
BIOLOGICAL PSYCHIATRY
BIPOLAR DISORDERS
BRITISH JOURNAL OF MEDICAL PSYCHOLOGY
BRITISH JOURNAL OF PSYCHIATRY
BULLETIN OF THE MENNINGER CLINIC
CANADIAN JOURNAL OF PSYCHIATRY-REVUE CANADIENNE DE PSYCHIATRIE
CHILD AND ADOLESCENT PSYCHIATRIC CLINICS OF NORTH AMERICA
CNS SPECTRUMS
COMMUNITY MENTAL HEALTH JOURNAL
COMPREHENSIVE PSYCHIATRY
CONVULSIVE THERAPY
CORTEX
CURRENT OPINION IN PSYCHIATRY
DEMENTIA AND GERIATRIC COGNITIVE DISORDERS
DEPRESSION AND ANXIETY
DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS
DYSEXIA
EATING AND WEIGHT DISORDERS-STUDIES ON ANOREXIA BULIMIA AND OBESITY
ENCEPHALE-REVUE DE PSYCHIATRIE CLINIQUE BIOLOGIQUE ET THERAPEUTIQUE
EPIDEMIOLOGIA E PSICHIATRIA SOCIALE-AN INTERNATIONAL JOURNAL FOR EPIDEMIOLOGY AND PSYCHIATRIC SCIENCES
EPILEPSY & BEHAVIOR
EUROPEAN CHILD & ADOLESCENT PSYCHIATRY
EUROPEAN PSYCHIATRY
GENERAL HOSPITAL PSYCHIATRY
HARVARD REVIEW OF PSYCHIATRY
INTELLECTUAL AND DEVELOPMENTAL DISABILITIES
INTERNATIONAL CLINICAL PSYCHOPHARMACOLOGY
INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL HYPNOSIS
INTERNATIONAL JOURNAL OF EATING DISORDERS
INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY
INTERNATIONAL JOURNAL OF MENTAL HEALTH
INTERNATIONAL JOURNAL OF METHODS IN PSYCHIATRIC RESEARCH
INTERNATIONAL JOURNAL OF PSYCHIATRY IN MEDICINE
INTERNATIONAL JOURNAL OF PSYCHOANALYSIS
INTERNATIONAL JOURNAL OF SOCIAL PSYCHIATRY
INTERNATIONAL PSYCHOGERIATRICS
INTERNATIONAL REVIEW OF PSYCHIATRY
IRISH JOURNAL OF PSYCHOLOGICAL MEDICINE
ISRAEL JOURNAL OF PSYCHIATRY AND RELATED SCIENCES
JOURNAL OF AFFECTIVE DISORDERS
JOURNAL OF ALZHEIMERS DISEASE
JOURNAL OF ANXIETY DISORDERS
JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS
JOURNAL OF BEHAVIOR THERAPY AND EXPERIMENTAL PSYCHIATRY
JOURNAL OF CHILD AND ADOLESCENT PSYCHOPHARMACOLOGY
JOURNAL OF CLINICAL PSYCHIATRY
JOURNAL OF ECT
JOURNAL OF GERIATRIC PSYCHIATRY AND NEUROLOGY
JOURNAL OF INTELLECTUAL DISABILITY RESEARCH
JOURNAL OF LEARNING DISABILITIES
JOURNAL OF MENTAL HEALTH POLICY AND ECONOMICS
JOURNAL OF NERVOUS AND MENTAL DISEASE
JOURNAL OF NEUROPSYCHIATRY AND CLINICAL NEUROSCIENCES

60
Analyse bibliométrique de la recherche de l’INSMT, 1997-2008

JOURNAL OF PERSONALITY DISORDERS
JOURNAL OF PSYCHIATRIC PRACTICE
JOURNAL OF PSYCHIATRIC RESEARCH
JOURNAL OF PSYCHIATRY & NEUROSCIENCE
JOURNAL OF PSYCHOSOMATIC OBSTETRICS AND GYNECOLOGY
JOURNAL OF PSYCHOSOMATIC RESEARCH
JOURNAL OF THE AMERICAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY
JOURNAL OF THE AMERICAN PSYCHOANALYTIC ASSOCIATION
JOURNAL OF TRAUMATIC STRESS
MENTAL RETARDATION
MOLECULAR PSYCHIATRY
MOOD DISORDERS
NEUROPYSYCHIATRIE
NEUROPYSYCHIATRY NEUROPSYCHOLOGY AND BEHAVIORAL NEUROLOGY
NEUROPYSYCHOLOGY
NORDIC JOURNAL OF PSYCHIATRY
PHARMACOPSYCHIATRY
PRAXIS DER KINDERPSYCHOLOGE UND KINDERPSYCHIATRIE
PSYCHIATRIA DANUBINA
PSYCHIATRIA POLSKA
PSYCHIATRIC ANNALS
PSYCHIATRIC CLINICS OF NORTH AMERICA
PSYCHIATRIC QUARTERLY
PSYCHIATRIC SERVICES
PSYCHIATRISCHE PRAXIS
PSYCHIATRY AND CLINICAL NEUROSCIENCES
PSYCHIATRY RESEARCH
PSYCHIATRY RESEARCH-NEUROIMAGING
PSYCHIATRY-INTERPERSONAL AND BIOLOGICAL PROCESSES
PSYCHOLOGICAL MEDICINE
PSYCHOLOGIE & NEUROPYSYCHIATRIE DU VIEILLISSEMENT
PSYCHOLOGY AND PSYCHOTHERAPY-THEORY RESEARCH AND PRACTICE
PSYCHOPATHOLOGY
PSYCHOPHARMACOLOGY BULLETIN
PSYCHOSOMATIC MEDICINE
PSYCHOSOMATICS
PSYCHOTHERAPY AND PSYCHOSOMATICS
RESEARCH IN DEVELOPMENTAL DISABILITIES
REVISTA BRASILEIRA DE PSIQUIATRIA
SCHIZOPHRENIA BULLETIN
SCHIZOPHRENIA RESEARCH
SOCIAL PSYCHIATRY AND PSYCHIATRIC EPIDEMIOLOGY
STRESS MEDICINE
SUICIDE AND LIFE-THREATENING BEHAVIOR
TRANSCULTURAL PSYCHIATRY
TURK PSIKIYATRI DERGISI
WORLD JOURNAL OF BIOLOGICAL PSYCHIATRY
ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE
ZEITSCHRIFT FUR PSYCHOSOMATISCHE MEDIZIN UND PSYCHOANALYSE
ZHURNAL NEVROLOGII I PSIKHIATRII IMENI S S KORSAKOVA
Addiction
ADDICTION
ADDICTION BIOLOGY
ADDICTION RESEARCH
ADDICTION RESEARCH & THEORY
ADDICTIVE BEHAVIORS
ADDICTIVE DISEASES
ADICCIONES
ALCOHOL
ALCOHOL AND ALCOHOLISM
ALCOHOL AND DRUG RESEARCH
ALCOHOL HEALTH & RESEARCH WORLD
ALCOHOL RESEARCH & HEALTH
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH
AMERICAN INDIAN AND ALASKA NATIVE MENTAL HEALTH RESEARCH
AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE
AMERICAN JOURNAL ON ADDICTIONS
BRITISH JOURNAL OF ADDICTION
BRITISH JOURNAL ON ALCOHOL AND ALCOHOLISM
BULLETIN ON NARCOTICS
CONTEMPORARY DRUG PROBLEMS
DRUG AND ALCOHOL DEPENDENCE
DRUG AND ALCOHOL REVIEW
DRUGS-EDUCATION PREVENTION AND POLICY
EUROPEAN ADDICTION RESEARCH
INTERNATIONAL JOURNAL OF THE ADDICTIONS
JOURNAL OF ADDICTION MEDICINE
JOURNAL OF ADDICTIONS NURSING
JOURNAL OF ADDICTIVE DISEASES
JOURNAL OF ALCOHOL AND DRUG EDUCATION
JOURNAL OF CHILD & ADOLESCENT SUBSTANCE ABUSE
JOURNAL OF DRUG EDUCATION
JOURNAL OF DRUG ISSUES
JOURNAL OF GAMBLING STUDIES
JOURNAL OF PSYCHEDELIC DRUGS
JOURNAL OF PSYCHOACTIVE DRUGS
JOURNAL OF STUDIES ON ALCOHOL
JOURNAL OF STUDIES ON ALCOHOL AND DRUGS
JOURNAL OF SUBSTANCE ABUSE
JOURNAL OF SUBSTANCE ABUSE TREATMENT
PSICOTHEMA
RESEARCH ADVANCES IN ALCOHOL AND DRUG PROBLEMS
RESEARCH COMMUNICATIONS IN ALCOHOL AND SUBSTANCES OF ABUSE
RESEARCH COMMUNICATIONS IN SUBSTANCES OF ABUSE
REVUE DE L’ALCOOLOISME
SUBSTANCE USE & MISUSE
TOXICOMANIES

Senses and Communication Disorders
ACTA OPHTHALMOLOGICA
ACTA OPHTHALMOLOGICA SCANDINAVICA
ADVANCES IN PAIN RESEARCH AND THERAPY
AMERICAN ANNALS OF THE DEAF
AMERICAN JOURNAL OF OPHTHALMOLOGY
AMERICAN JOURNAL OF OPTOMETRY AND PHYSIOLOGICAL OPTICS
Analyse bibliométrique de la recherche de l'INSMT, 1997-2008

AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY
ANESTHESIA AND ANALGESIA
ANNALS OF OPHTHALMOLOGY
ANNALS OF OPHTHALMOLOGY & GLAUCOMA
ANNALS OF OPHTHALMOLOGY-GLAUCOMA
APHASIOLOGY
APPLIED PSYCHOLINGUISTICS
ARCHIVES D OPHTALMOLOGIE
ARCHIVES OF OPHTHALMOLOGY
AUDIOLOGY
AUDIOLOGY AND NEURO-OTOLOGY
AUDITORY NEUROSCIENCE
AUGMENTATIVE AND ALTERNATIVE COMMUNICATION
AUSTRALIAN AND NEW ZEALAND JOURNAL OF OPHTHALMOLOGY
AUSTRALIAN JOURNAL OF OPHTHALMOLOGY
B-ENT
BRITISH JOURNAL OF AUDIOLOGY
BRITISH JOURNAL OF DISORDERS OF COMMUNICATION
BRITISH JOURNAL OF OPHTHALMOLOGY
CANADIAN JOURNAL OF OPHTHALMOLOGY-JOURNAL CANADIEN D OPHTHALMOLOGIE
CHEMICAL SENSES
CHEMICAL SENSES & FLAVOUR
CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY
CLINICAL AND EXPERIMENTAL OPTOMETRY
CLINICAL JOURNAL OF PAIN
CLINICAL LINGUISTICS & PHONETICS
CLINICAL VISION SCIENCES
COMMUNICATION AND COGNITION
CORNEA
CURRENT EYE RESEARCH
CURRENT OPINION IN OPHTHALMOLOGY
CURRENT PAIN AND HEADACHE REPORTS
DEAFNESS AND EDUCATION
DEVELOPMENTS IN OPHTHALMOLOGY
DOCUMENTA OPHTHALMOLOGICA
DOULEUR ET ANALGESIE
EAR AND HEARING
EAR NOSE & THROAT JOURNAL
ENT-EAR NOSE & THROAT JOURNAL
EUROPEAN JOURNAL OF DISORDERS OF COMMUNICATION
EUROPEAN JOURNAL OF OPHTHALMOLOGY
EUROPEAN JOURNAL OF PAIN
EUROPEAN JOURNAL OF PAIN-LONDON
EXPERIMENTAL EYE RESEARCH
EYE
EYE & CONTACT LENS-SCIENCE AND CLINICAL PRACTICE
EYE EAR NOSE AND THROAT MONTHLY
EYE-TRANSACTIONS OF THE OPHTHALMOLOGICAL SOCIETIES OF THE UNITED KINGDOM
FOLIA OPHTHALMOLOGICA JAPONICA
GERMAN JOURNAL OF OPHTHALMOLOGY
GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY
Regenerative Medicine
ARTIFICIAL ORGANS
BIOMATERIALS ARTIFICIAL CELLS AND ARTIFICIAL ORGANS
BIOMATERIALS ARTIFICIAL CELLS AND IMMobilIZATION BIOTECHNOLOGY
BIOMATERIALS MEDICAL DEVICES AND ARTIFICIAL ORGANS
CELL STEM CELL
CLONING AND STEM CELLS
INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS
JOURNAL OF ARTIFICIAL ORGANS
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE
NEURAL REGENERATION RESEARCH
REGENERATIVE MEDICINE
STEM CELL REVIEWS
STEM CELLS
STEM CELLS AND DEVELOPMENT
Tissue engineering
Tissue engineering and regenerative medicine
Tissue engineering part A
Tissue engineering part B-reviews
Tissue engineering part C-methods
Transactions american society for artificial internal organs
Wound repair and regeneration

Nanomedicine
DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES
IEEE PROCEEDINGS-NANOBIOENGINEERING
IEEE TRANSACTIONS ON NANOBIOENGINEERING
IET NANOBIOENGINEERING
INTERNATIONAL JOURNAL OF NANOMEDICINE
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY
MICROFLUIDICS AND NANOFUIDICS
NANOBIOLOGY
NANOMEDICINE
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE
NANOTOXICOLOGY
NATURE NANOTECHNOLOGY

Epigenetics
EPIGENETICS
Address

Observatoire des sciences et des technologies
Centre interuniversitaire de recherche sur la science et la technologie
Université du Québec à Montréal
CP 8888, Succ. Centre-ville
Montréal (Québec)
H3C 3P8

www.ost.qc.ca