The Canadian Association for Neuroscience presents

9th Annual Canadian Neuroscience Meeting 2015

MEETING PROGRAM

www.can-acn.org

May 24–27, 2015 Westin Bayshore Hotel Vancouver, BC

PROGRAM AT A GLANCE

TIME	Saturday	Sunday		Monday		Tuesday		Wednesday			
	23-May	24-May			25-May		26-May	27-May			
8:00											
8:15											
8:30											
8:45							Plenary Synposium 1		Plenary Symposium 2		Plenary Symposium 3
9:00							8:30-9:30AM		8:30-9:30AM		8:30-9:30AM
9:15											
9:30											
9:45							Coffee Break		Coffee Break	u	Coffee Break
10:00			e				Posters & Exhibits 9:30-10:45AM		Posters & Exhibits 9:30-10:45AM	do	Exhibits 9:30-10:45AM
10:15			dsic	Canadian Neurophotonics Platform: Using Light to Monitor and Change the Brain			5.50°±0.45AW		5.30-10.43AW	Jesk	5.50-10.43AW
10:30			o Be							on [
10:45			ch t				Brainstar Award 10:45-11:00AM		Brainstar Award 10:45-11:00AM Plenary Speaker 2	nati	Brainstar Award 10:45-11:00AM
11:00			Ben							forr	forr
11:15			шо				Plenary Speaker 1			e In	Plenary Speaker 3
11:30			n Fr	5			Mayank Mehta		Karel Svoboda	renc	Kristin Scott
11:45			rde	anc	ses		11:00-12:00PM		11:00-12:00PM	nfei	11:00-12:00PM
	Free Time		Diso	itor	Alternative Careers Workshop for Trainees	Den		nəc		d Cor	
12:00	15		pue	Mon	or Tr	k OF		k Op	CAN-ACN AGM 12:00-12:30	Registration and Conference Information Desk Open	
12:15			Jer ö	to	op fe	Des		Des	12.00.12.00	atior	
12:30			Orc	ight	ksho	ion	Lunch on own	ion		istra	Lunch on own
12:45		k O	ient	ng L	Vor	mat	12:00-1:30PM	mat	Lunch on own	Regi	12:00-1:30PM
1:00		Des	ver	Usi	ers /	nfor		nfor	12:30 - 1:30		
1:15		tion	Wo	Ë	are	Ce		ce II			
1:30		rma	and	latfc	ve C	eren		eren			
1:45		ion		cs Pl	nati	onfe		nd Confe	Parallel Symposia 5-8		
2:00	0		: Visi	ionic	lter	D pr	Parallel Symposia 1-4				Parallel Symposia 9-12
2:15		Registration and Conference Information Desk Open	illite	bho	٩	Registration and Conference Information Desk Open	1:30-3:00PM	Registration and Conference Information Desk Open	1:30-3:00PM		1:30-3:00PM
2:30			Sate	nro							
		pu o	oint	Ne							
2:45			of Sc	dian		Re		Re	0.11.0		
3:00		rati	/ Ci	Cane			Coffee Break 3:00-3:30PM		Coffee Break 3:00-3:30PM		
3:15		egist	CAPnet / CPS Joint Satellite: Vision and Movement Order and Disorder: From Bench to Bedside	Ŭ			5100 51501 111	-	5.00-5.30PW	-	
3:30		Re									
3:45											
4:00											
4:15							Posters & Exhibits		Posters & Exhibits		
4:30	Jon Stoessl & Janet Werker Science World 4:00-6:00PM						3:30-5:30PM		3:30-5:30PM		
4:45											
5:00			Opening	Opening Remarks - Doug Munoz ung Investigator Award - Samuel David		-					
5:15			Young Invest								
5:30			Conversation about Brain H		Health with				Young Investigator Lecture		
5:45				CIHR, NHCC, Brain Canada					5:30-6:00PM		
6:00							Parallel Sessions				Free Time
			Presidential Lecture			5:30-7:00PM		Keynote Lecture			
6:15			N	Aelvyn Goodal					Clay Reid		
6:30	45		6:00-7:00PM					6:00-7:00PM			
6:45							Percention (non-hosted)		Pacantian (non-hosted)		
7:00							Reception (non-hosted) Room TBC		Reception (non-hosted) Room TBC		
7:15	Free Time			g Reception (h			7:00-8:00		7:00-8:00		
7:30	Thee time		Currents Restaurant /			7.00*0.00					
7:45		F		Pool & Garden Area 7:00-8:15PM							
8:00			7.00-0.13PINI			CAN Student Social					
						Mahoney & Sons	Free Time				
8:15				Troo Time			7:30-9:30PM				
8:30			I	ree Time							
9:00											

TABLE OF CONTENTS

BOUT CAN-ACN
ETTER FROM THE PRESIDENT
AN-ACN LEADERSHIP
AN-ACN ADMINISTRATION
JTURE MEETING
ENERAL CONFERENCE INFORMATION
KHIBITORS MAP
D15 CAN YOUNG INVESTIGATOR AWARDEE
RAIN STAR AWARDEE TALKS 2015
PECIAL MEETINGS & SOCIAL EVENTS
NNUAL CONFERENCE SCHEDULE
LENARY SYMPOSIA AND KEYNOTE SESSIONS
ARALLEL SYMPOSIA
DSTER AUTHOR INDEX
DSTER SESSIONS
Poster Session 1 – Monday, May 25, 2015
Poster Session 2 – Tuesday, May 26, 2015
KHIBITORS page 51
DSTERS FLOOR PLAN

To learn more about us or to secure our services for your

conference or organization, please call 1 800 472-7644 or e-mail us:

We specialize in planning, organizing and delivering exceptional international scientific, academic and research conferences.

Podium offers effective and efficient conference management solutions through a range of conference tools, conference planning, and conference marketing services.

office@podiumconferences.com.

Conference Management, Planning and Delivery

From idea conception through to conference delivery and the post review stage, we are here to help you deliver an outstanding conference.

Website Design, Hosting & Maintenance

Our conference website service engages with your conference to focus on creating a comprehensive and specialized website designed to describe, promote and generate conference leads and reach your audience.

Online Registration, Abstract, Membership and Exhibit Booth Management

With our range of conference tools, you will be able to find efficient solutions to that save precious administrative and volunteer hours, freeing up your staff to focus on other critical areas.

A DIVISION OF De Armond Management

Visit us online at www.podiumconferences.com

Association Management

We provide your association with the ability to focus on core responsibilities and roles related to organizational growth while a system is in place to manage the daily affairs and activities.

ABOUT CAN-ACN

The Canadian Association for Neuroscience is a community of scientists, researchers and students brought together with the common purpose of representing the interests of Canadian neuroscientists at national and international levels. CAN's mission is to promote communication among neuroscientists throughout Canada, and generate interest and understanding of the importance of scientific research and development.

CAN-ACN Annual Meeting

Since 2007, the Canadian Neuroscience Annual Meetings have been an important platform for researchers to present their work, generate scholarly debate, and obtain valuable feedback and be informed about the important neuroscience research done across the country and abroad. This highly regarded conference is in its 9th year.

The Canadian Association9th Annualfor Neuroscience presentsCanadian Neuroscience Meeting 2015

LETTER FROM THE PRESIDENT

DEAR COLLEAGUES AND FRIENDS,

It is my pleasure to welcome you to the 9th Annual Canadian Neuroscience Meeting in Vancouver. Our Scientific Program committee has put together an impressive list of Keynote and Plenary speakers. As we build on the experience of our previous meeting, we aim to continue to showcase the best of neuroscience research in Canada.

I wish to thank all our members who submitted abstracts and session proposals for the annual meeting. It is the quality of these submissions that drives the content and excellence of our meeting. I especially want to thank all our members who have submitted proposals for parallel symposia this year. As you will see in the program, parallel symposia, organized by our members, are a very important part of our meeting, and feature a wide range of research topics.

I also wish to thank our members who submitted the names of candidates for the Young Investigator Award. The very high quality of the candidates proposed this year highlight the excellence of many young neuroscientists in this country. All candidates can be proud of having been nominated.

The CAN meeting is an ideal place to meet and interact with colleagues from across the country. It is also a great place for trainees to present their work, get valuable feedback, and make connections for the future. We also have special mentoring and career development sessions planned for trainees and junior investigators.

I hope you enjoy the meeting, and I look forward to seeing you in person in Vancouver.

Best Regards,

Doug Munoz,

President of the Canadian Association for Neuroscience

CHERS COLLÈGUES ET AMIS,

Il me fait grand plaisir de vous accueillir à Vancouver pour le 9ème congrès annuel de l'Association canadienne des neurosciences. Notre comité du programme scientifique a assemblé un groupe impressionnant de présentateurs pléniers et de d'honneur. En bâtissa nt sur l'expérience acquise au cours des congrès antérieurs, nous visons à toujours vous présenter le meilleur de la recherche en neuroscience au Canada.

Je tiens à remercier tous les membres qui ont soumis des résumés pour les présentations orales et par affiche de notre congrès. La qualité de ces soumissions assure à chaque année un contenu renouvelé et l'excellence du congrès. Comme vous le constaterez dans le programme, les symposiums parallèles, organisés par nos membres, sont une composante centrale du congrès, et permettent de mettre en valeur une grande variété de sujets de recherche.

Je veux aussi remercier les membres qui ont soumis le nom d'un candidat pour le prix du Jeune chercheur de l'ACN 2015. La grande qualité des candidatures soumises cette année met en lumière l'excellence de la relève en recherche en neuroscience dans notre pays. Tous les candidats peuvent être fiers de leur mise en candidature.

Le congrès de l'ACN est l'endroit idéal pour rencontrer et interagir avec des collègues de tous les coins du pays. C'est aussi une occasion pour les étudiants et stagiaires de présenter leur travail et de recevoir un feedback important. Nous offrons également des séances de mentorat et de développement de carrière pour les étudiants, stagiaires et jeunes chercheurs. Nous vous souhaitons un excellent congrès, et avons bien hâte de vous accueillir en personne!

Bien à vous, Doug Munoz

Président de l'Association canadienne des neurosciences

CAN-ACN LEADERSHIP

Elected members govern the Canadian Association for Neuroscience. These members comprise the Board of Directors who in turn elects Officers that comprise the Executive Committee. The Society's Bylaws govern how the Board manages the Society.

Executive Committee:

President:	DOUG MUNOZ, Queen's University
Vice-president (President-elect):	FREDA MILLER, University of Toronto
Secretary:	KATALIN TOTH, Université Laval
Treasurer:	ELLIS COOPER, McGill University

Board Members:

Past President:SAMUEL DAVID, McGill UniversityAdvocacy Officer:DAVID KAPLAN, University of TorontoCHARLES BOURQUE, McGill UniversityWILLIAM COLMERS, University of AlbertaEDWARD RUTHAZER, McGill UniversityMELANIE WOODIN, University of Toronto

2015 Scientific Program Committee

Conference Chair: **DR. KURT HAAS** Associate Professor, Department of Anatomy and Cell Biology, University of British Columbia Tula Foundation Investigator, Brain Research Centre MSFHR Scholar

Co-chair: **DR. KATHLEEN E. CULLEN** Professor, Department of Physiology, McGill University

NAME	INSTITUTION
JAIDEEP BAINS	University of Cal
SHERNAZ BAMJI	University of Brit
JEAN-FRANÇOIS CLOUTIER	McGill University
JODY CULHAM	University of We
KERRY DELANEY	University of Vict
MICHIRU HIRASAWA	Memorial Unive
JOHN HOWLAND	University of Sas
STEFAN KOHLER	University of We

University of Calgary
University of British Columbia
McGill University
University of Western Ontario
University of Victoria
Memorial University
University of Saskatchewan
University of Western Ontario

NAME
STEVE LACROIX
NEIL MAGOSKI
KARIM NADER
AMY RAMSEY
CATHERINE RANKIN
KAORI TAKEHARA-NISHIUCHI
LOUIS-ERIC TRUDEAU

INSTITUTION
Université Laval
Queen's University
McGill University
University of Toronto
University of British Columbia
University of Toronto
Université de Montréal

ΙΝΟΤΙΤΙΤΙΟΝ

CAN-ACN ADMINISTRATION

ASSOCIATION SECRETARIAT & CONFERENCE MANAGEMENT

<u>secretariat@can-acn.org</u>

PODIUM CONFERENCE SPECIALISTS

- Marischal De Armond
- Darcy Lipsey
- Caitlin Mooney

COMMUNICATIONS DIRECTOR AND WEBMASTER *info@can-acn.org*

Julie Poupart

Membership Information

CAN membership is open to all scientists, principal investigators and students actively involved in neuroscience research from across Canada and around the world. CAN membership dues are paid annually and cover the calendar year from September 1st to August 31st.

Benefits

CAN-ACN membership includes the following benefits:

- Eligibility to submit or sponsor communications at CAN Scientific meetings
- A significant reduction on registration for our annual meeting
- Networking opportunities
- The possibility of advertising positions and meetings on the CAN-ACN website
- A forum to exchange information with colleagues and the general public
- Eligibility for CAN-ACN prizes and awards
- Members, Honorary Members and Emeritus Members, but not Student Members or Corporate Members, shall have the right to vote at any duly constituted business meeting of the Association and shall have the right to hold office in the Association.

TO BECOME A CAN-ACN MEMBER PLEASE VISIT US AT THE REGISTRATION DESK TODAY.

10th Annual CAN-ACN Meeting Toronto, Ontario · May 29 – June 1, 2016

Special CAN-ACN rates: Double Room (single or double occupancy) \$189

GENERAL CONFERENCE INFORMATION

Conference Venue

WESTIN BAYSHORE

1601 Bayshore Drive. Vancouver, BC V6G 2V4 All conference sessions will take place in this location.

Registration

Annual Conference registration fees include access to all sessions including panel, symposium, and poster sessions. Registration also includes 2 daily refreshment breaks.

Name Badges

Your name badge is your admission ticket to the conference sessions, coffee breaks, reception. Please wear it at all times. At the end of the Conference we ask that you recycle your name badge in one of the name badge recycling stations that will be set out, or leave it at the Registration Desk.

LOST NAME BADGES:

THERE IS A \$25 REPLACEMENT FEE FOR ANY LOST OR MISSING

NAME BADGES – If you've lost your name badge, visit the registration desk for a replacement as soon as possible.

Registration and Information Desk Hours

The CAN-ACN Registration and Information Desk, located in the Bayshore Grand Ballroom Foyer will be open during the following dates and times:

SUNDAY, MAY 24	8:00 AM to 8:00 PM
MONDAY, MAY 25	8:00 AM to 7:00 PM
TUESDAY MAY 26	8:00 AM to 7:00 PM
WEDNESDAY MAY 27	8:00 AM to 4:00 PM

If you need assistance during the conference, please visit the Registration Desk.

Poster Information

SET-UP / REMOVAL

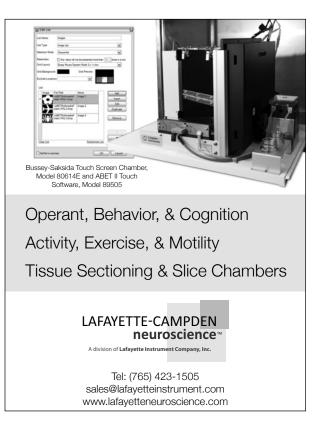
There are two Poster Sessions during the Meeting and posters have been allocated to either one of the sessions based on poster themes. Poster presenters must set-up and remove their posters during the following times.

POSTER SESSION 1 – Monday, May	y 25
Poster Hours:	9:30 – 10:45 AM
(lunch on own – posters will remain o	open) 12:00 PM – 1:30 PM
	3:30 – 5:30 PM
Poster set-up:	Monday, May 25: 7:30 – 8:30 AM
REMOVAL OF ALL POSTERS BY:	8:00PM ON MAY 25
POSTER SESSION 2 — Tuesday, May	26
Poster Hours:	9:30 – 10:45 AM
(lunch on own – posters will remain o	open) 12:00 PM – 1:30 PM
	3:30 – 5:30 PM
Poster set-up:	Tuesday, May 26: 7:30 — 8:30 AM
REMOVAL OF ALL POSTERS BY:	8:00 PM ON MAY 26

Information on Poster Authors, Poster Numbers and Poster Titles begins on page 27. Digital copies can be downloaded from the Member Only section of the <u>CAN-ACN Website</u>.

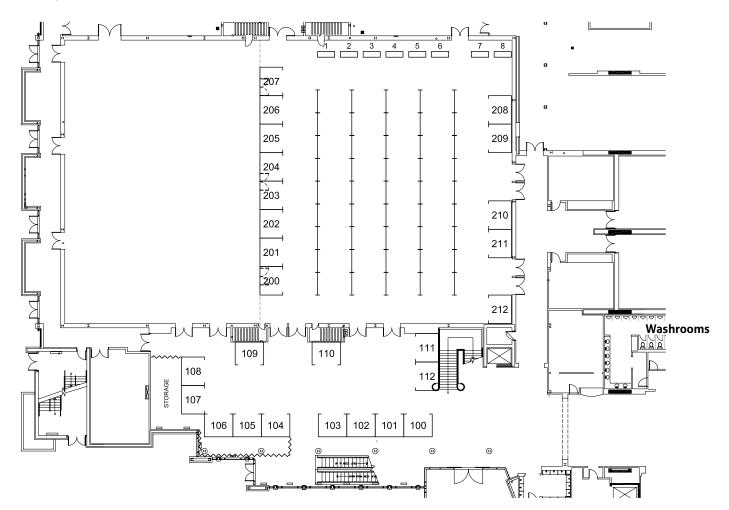
Message Board

For your convenience, a Message Board will be located near the Registration Desk. Feel free to leave messages of interest to other conference participants.


Staff

CAN-ACN staff from Podium Conference Management can be identified by ribbons on their name badges. Feel free to ask anyone of our staff for assistance. For immediate assistance please visit us at the Registration Desk.

Nearby Amenities


Currents Restaurant, the Seawall Bar & Grill, Starbucks and the pools/ workout room are all located on the Level 1 of the hotel.

The Westin Bayshore is a downtown Vancouver hotel that offers guests the best of both worlds: the activities and cultural events of the city, as well as a relaxing Vancouver resort experience.

EXHIBITORS

Bayshore Ballroom DEF

BOOTH #	EXHIBITOR	B
100	Fine Science Tools	2
102	NeuroNexus	2
103	Stoelting Co.	2
104	Scientifica Ltd	2
105	Society for Neuroscience	2
106	Canadian Institutes of Health Research (CIHR)	2
108	STEMCELL Technologies, Inc.	2
109	Plexon	2
110	Olympus Canada Inc	Т
111	Ted Pella, Inc.	Т
112	Leica Microsystems Canada Inc.	Т
200	Noldus Information Technology	T
201	Lafayette-Campden Neuroscience	
202	TMS International	

BOOTH #	EXHIBITOR
203	Blackrock Microsystems
204	Huron Digital Pathology
207	Clever Sys Inc.
208	Tucker-Davis Technologies
209	HEKA Electronics Inc.
210	Integrated DNA Technologies
211	Precision NanoSystems Inc.
212	Abcam
TABLE TOP 1	StressMarq Biosciences Inc.
TABLE TOP 2	ALZET Osmotic Pumps/DURECT Corp
TABLE TOP 5	Animal Care Systems
TABLE TOP 6	Parkinson Society Canada - Société Parkinson Canada

2015 CAN YOUNG INVESTIGATOR AWARDEE

The Canadian Association for Neuroscience (CAN) is proud to announce that **DR. MICHAEL GORDON**, from the University of British Columbia, has been awarded the 2015 CAN Young Investigator Award for the 9th Annual Canadian Neuroscience Meeting in Vancouver, British Columbia.

The Young Investigator Award Lecture will take place on Tuesday, May 26 from 5:30pm – 6:00pm in the Bayshore Ballroom

MICHAEL GORDON

University of British Columbia Dr. Michael Gordon's research provides insight into two of the most critical decisions we, and other animals, have to make: what to eat, and how much. He studies this important and complex question in the fruit fly, Drosophila melanogaster, which has a relatively simple nervous system, with one

million times fewer neurons

than ours, yet displays a complex array of behaviours in response to food cues. He has significantly contributed to our understanding of the neural circuits that drive taste responses and feeding preferences.

Using the fly brain as a model, the Gordon lab combines molecular genetics with optical techniques and electrophysiology to map taste circuits, probe how these circuits encode information, and unravel their impact on feeding. These studies contribute to our understanding of how the brain translates sensory information into behaviour.

Dr. Gordon's work has shown that food preference can be viewed as a changing metric, based initially on taste, but evolving with experience, and the animal's physiological condition. These studies support the concept that in addition to sensing the palatability of food, like the sweetness or bitterness, flies also have a mechanism for sensing its caloric content, and that this could drive longer-term food preferences.

More recently, Dr. Gordon's team has uncovered a neural mechanism used by the fly brain to integrate the opposing effects of sweet and bitter tastes. Information from multiple sensory cues, the physiological state and experience of the animals thus all contribute to guiding feeding decisions.

Dr. Gordon's publication track record demonstrates the importance of his research contributions, and it is particularly impressive to note his productivity in the short four years since he has established himself as an independent researcher at the University of British Columbia. His recent research has been published in prestigious journals such as Nature Communications (2015), Current Biology (2014), Neuron (2014, 2013), and The Journal of Neuroscience (2012). Dr. Gordon's contributions, which include earlier publications in Neuron in 2009 and Nature in 2005, have had significant impact and are highly cited, further demonstrating his position as a leader in the field of feeding regulation. In addition, Dr. Gordon is a much-appreciated Faculty member at the department of Zoology at the University of British Columbia. His extensive teaching duties and successful mentorship of both undergraduate and graduate students attests to his importance in the Department.

The Canadian Association for Neuroscience wishes to thank Dr. Vanessa Auld, Professor at the University of British Columbia, and Dr. Tim O'Connor, Professor and Chair of the Graduate Program in Neurosciences at University of British Columbia, for nominating him for this award.

Within a very short time period as an independent researcher, Dr. Michael Gordon has established himself as an exceptional young scientist and a rising star in Canadian Neuroscience. We are very proud to present him with the 2015 CAN Young Investigator Award.

ABSTRACT:

Integrating taste modalities and motivation in the Drosophila brain.

Food palatability is heavily dependent on taste and internal motivation. Sweet compounds act as appetitive cues that suggest the presence of nutritive carbohydrates, while bitter compounds are aversive and can serve as a warning of toxins. Palatability is determined in part by the relative contribution of these, and other, taste modalities, but the neural mechanisms underlying their integration are largely unknown. Recently, we discovered that presynaptic gain control underlies sweet and bitter taste integration in the fly brain. Sweet gustatory neurons express the metabotropic GABABR, which inhibits their synaptic activity. Since both sweet and bitter stimuli lead to GABA release in the taste centre of the brain, presynaptic inhibition of sweet neurons via GABABR expands their dynamic range and suppresses their output in the presence of opposing bitter stimuli. This provides an efficient global mechanism of suppressing appetitive taste behaviours towards sweet foods laced with bitter compounds. However, the aversive effects of bitter taste are also modulated by motivation – hungry flies are more likely to consume bitter foods than flies that are sated. We have uncovered a population of neurons in the fly brain that link satiety state with bitter taste. The activity of these modulatory neurons decreases upon starvation, and artificially silencing them renders flies relatively insensitive to bitter compounds by reducing bitter neuron synaptic output. Overall, we favour a model in which synaptic modulation of gustatory neurons underlies integration of taste modalities and plasticity of taste circuits in response to changes in nutritional needs.

BRAIN STAR AWARDEE TALKS 2015

Each year, since 2001, the Institutes for Neuroscience, Mental Health and Addiction (INMHA) of the Canadian Institutes of Health Research (CIHR) selects up to 15 great research articles and award their authors a Brain Star Award. These awards were designed to recognize the excellence of research done in Canada by students and trainees in all fields and disciplines covered by INMHA, to promote research careers in neuroscience, mental health and addiction in Canada, and to stimulate the participation of trainees in the planning and development of INMHA activities.

The top three Brain Star Awardees are invited by INMHA and CAN to present their award-winning research at the Canadian Neuroscience Meeting. INMHA also gives the recipient a prize of \$1,500, and recognition on the INMHA website and communications.

MARTIN MUNZ McGill University MONDAY, MAY 25, 10:45-11:00AM

Neuronal firing of retinal ganglion cell axons instructs growth and connectivity in the developing visual system

Hebbian plasticity is a process in which temporal correlation between the pre- and postsynaptic cell's firing instructs circuit refinement during development. Retinal ganglion cell (RGC) axons of Xenopus tadpoles, mainly innervate the contralateral optic tectum, however we found that in about 40% of tadpoles a few axons are misguided to the ipsilateral tectum. We used visual stimulation designed to synchronously or asynchronously activate single ipsilateral RGC axons relative to the contralateral inputs to see how correlated firing instructs circuit formation and plasticity. Two-photon time lapse imaging of ipsilateral RGC axons revealed that asynchronous, but not synchronous stimulation, upregulated branch additions. However, synchronous stimulation stabilized axonal branches and suppressed branch additions. To see how synaptic transmission contributes to axonal branch formation and stability, we transfected the ipsilateral RGCs to express tetanus toxin light chain (TeNT-LC) to prevent synaptic transmission. Visual stimulation still promotes axonal branching in these cells but, the stabilization of newly formed branches by synchronous stimulation was lost. To see if the neural activity in RGCs promotes axonal branch motility independently of other inputs we stimulated ipsilateral RGC axons, expressing TeNT, by stimulation of the ipsilateral axon itself induces increased retraction of that axon. Thus, the activity of surrounding contralateral axons promotes increased axonal branch motility, while cell-autonomous firing causes branch tip retraction.

YING CHEN York University TUESDAY, MAY 26, 10:45 – 11:00AM

Allocentric and Egocentric Representations for Visual Memory and Action in Human Cortex

How do we aim movements toward objects? For instance, how are we able to accurately reach for a cup of coffee located on a table next to a computer monitor we are looking at? Many daily activities involve such a reaching movement. In these situations, the visual location of the target object can be represented in two different frames of reference, either relative to one's own body (egocentric), or relative to a visual landmark (allocentric). In real world situations, the brain uses both of these representations to guide action, but little is known about the specific neural mechanisms for either allocentric representation, or its conversion into egocentric movement commands. My research focused on answering these questions using event-related fMRI designs.

The goal of my first study (Chen et al. Journal of Neuroscience 2014) was to distinguish brain areas involved in the two types of representation in memory for reach. This study found that partially overlapping but different brain areas were responsible for allocentric and egocentric representations of remembered visual targets. In particular, superior occipital gyrus was involved in egocentric visual direction, in contrast, inferior temporal gyrus and inferior occipital gyrus encoded allocentric visual direction. For both tasks, a complete parieto-frontal network coded movement direction during final reach response. Based on the finding of this fMRI study and my previous behavioral study showing an early conversion of allocentric-to-egocentric representation (Chen et al. Neuropsychologia 2011), my following fMRI study was designed to especially examine brain areas involved in allocentric-to-egocentric conversion of remembered visual target for reach. This study indicates that specific areas of posterior parietal and frontal cortices, including precuneus, middle frontal gyrus and inferior parietal cortex were implicated in converting allocentric representations of remembered target direction into egocentric plans for reach. The findings of the two fMRI studies together provide researchers and clinicians with important applications for patients with brain damage in "allocentric" versus "egocentric" areas of the brain, for which different therapeutic approaches can be developed.

ROBERT P. BONIN Institut Universitaire en Santé Mentale de Québec WEDNESDAY, MAY 27, 10:45 – 11:00AM

A spinal analogue of memory reconsolidation enables the reversal of hyperalgesia

The development of persistent pain through the sensitization of pain relays in the spinal cord dorsal horn shares many mechanistic and phenotypic parallels with memory formation. The parallels between memory formation and hyperalgesia raise the possibility that hyperalgesia may also exhibit a phenomenon similar to memory reconsolidation: a process in which memories are rendered labile after reactivation and susceptible to disruption. We tested the hypothesis that the reactivation of sensitized pain pathways initiates a process similar to memory recall and reconsolidation to render hyperalgesia labile and reversible.

BRAIN STAR AWARDEE TALKS 2015

We find that both acute and long-lasting mechanical hyperalgesia could be reversed after reactivation of the sensitized pain pathway and the inhibition of spinal protein synthesis. In electrophysiological experiments, synaptic facilitation in the superficial dorsal horn, a cellular model of hyperalgesia, was similarly rendered labile and reversible by reapplying the LTP induction stimulus in the presence of the protein synthesis inhibitor anisomycin. These findings provide the first demonstration of a reconsolidation-like phenomenon in spinal pain processing pathways and the sensory system in general, suggesting that reconsolidation may exist more broadly throughout the CNS than previously known. These findings may further provide a novel therapeutic strategy for the treatment and erasure of persistent pain.

Acknowledgements: This work was funded by the Canadian Institutes of Health Research (CIHR), the Fonds de recherche du Québec – Santé (FRQS), and the Louise and Alan Edwards Foundation.

SPECIAL MEETINGS & SOCIAL EVENTS

SATURDAY, MAY 23

SATURDAT, MAT 23					
4:00 — 6:00 PM Science World, 1455 Quebec St,	CAN 2015 PUBLIC LECTURE The Clinic as Laboratory: Lessons from Parkinson's				
Vancouver, BC	JON STOESSL, Co-Director of the Djavad Mowafaghian Centre for Brain Health, University of British Columbia Understanding the foundations of language development by studying the infant brain JANET WERKER, Professor and Canada Research Chair, Department of Psychology, University of British Columbia				
SUNDAY, MAY 24					
6:00 – 7:00 PM	PRESIDENTIAL LECTURE				
Bayshore Ballroom Salon ABC	Sponsored by THE ONTARIO BRAIN INSTITUTE MELVYN GOODALE , University of Western Ontario <i>How We See and Hear Stuff: Visual and Auditory Routes to Understanding the Material Properties</i> <i>of Objects</i>				
7:00 — 8:15 PM Currents Restaurant / Pool & Garden Area	OPENING RECEPTION (HOSTED)				
MONDAY, MAY 25					
7:00 — 8:00 PM Bayshore Ballroom Salon DEF	RECEPTION (NON-HOSTED)				
7:30 — 9:30 PM Mahoney & Sons Burrard Landing (1055 Canada Place, Unit #36)	CAN STUDENT SOCIAL Sponsored by Island Medical Program & Division of Medical Sciences, University of Victoria, University of British Columbia, and The Graduate Program in Neuroscience Canadian Society for Molecular Biosciences (CSMB)				

TUESDAY, MAY 26

	CAN-ACN ANNUAL GENERAL MEETING All CAN members invited to attend
6:00 - 7:00 PM	KEYNOTE LECTURE
Bayshore Ballroom Salon ABC	Sponsored by Djavad Mowafaghian Centre for Brain Health
	CLAY REID, Allen Institute for Brain Science
	Functional Connectomics at the Allen Institute
7:00 - 8:00 PM	RECEPTION (NON-HOSTED)
Bayshore Ballroom Salon DEF	

SATURDAY, MAY 23, 2015

4:00 – 6:00 PM Science World, 1455 Quebec St, Vancouver, BC AN 2015 PUBLIC LECTURE JON STOESSL, Co-Director of the Djavad Mowafaghian Centre for Brain Health University of British Columbia *The Clinic as Laboratory: Lessons from Parkinson's* JANET WERKER, Professor and Canada Research Chair, Department of Psychology, University of British Columbia *Understanding the foundations of language development by studying the infant brain*

SUNDAY, MAY 24, 2015

9:00 AM – 4:45 PM Stanley Park Salon 1	SATELLITE 1 CAPnet / CPS: Vision and Movement Order and Disorder: From Bench to Bedside
9:00 AM – 4:45 PM Stanley Park Salon 2	SATELLITE 2 Canadian Neurophotonics Platform: Using Light to Monitor and Change the Brain
9:00 AM – 4:00 PM Stanley Park Salon 3	SATELLITE 3 Alternative Careers Workshop for Trainees
	WELCOME AND OPENING REMARKS
5:00 – 6:00 PM Bayshore Ballroom Salon ABC	DOUG MUNOZ , President of the Canadian Association for Neuroscience
	YOUNG INVESTIGATOR AWARD PRESENTATION
	SAMUEL DAVID, Chair of the Nominations Committee Developing a Dialog about Brain Health Panel
	DOUG MUNOZ, President of the Canadian Association for Neuroscience
	ANTHONY PHILLIPS, Director of the Institutes of Neuroscience, Mental Health and Addiction, CIHR INEZ JABALPURWALA, President and CEO, Brain Canada
	Representative from NEUROLOGICAL HEALTH CHARITIES OF CANADA
6:00 - 7:00 PM	PRESIDENTIAL LECTURE
Bayshore Ballroom Salon ABC	Sponsored by THE ONTARIO BRAIN INSTITUTE
	MELVYN GOODALE, University of Western Ontario
	<i>How We See and Hear Stuff: Visual and Auditory Routes to Understanding the Material Properties of Objects</i>

7:00 – 8:15 PM Currents Restaurant / Pool, Garden Area **OPENING RECEPTION** (hosted)

MONDAY, MAY 25, 2015

8:30 — 9:30 AM Bayshore Ballroom Salon ABC	PLENARY SYMPOSIUMChair: MIRIAM SPERING, University of British ColumbiaSeeing and moving: how the brain controls vision and gazeBRIAN CORNEIL, Robarts RIThrough the looking glass: reflections of sensory and cognitive processing in the motor peripheryCHRISTOPHER PACK, McGill UniversityA sensorimotor role for oscillations in the visual cortex
9:30 — 10:45 AM	COFFEE BREAK - Poster & Exhibit Hall
10:45- 11:00 AM	BRAIN STAR TALK - MARTIN MUNZ, McGill University
11:00 AM — 12:00 PM Bayshore Ballroom Salon ABC	FEATURED PLENARY SPEAKER MAYANK MEHTA, University of California, Los Angeles From Virtual Reality to Reality: How Neurons Make Maps Sponsored by CENTRE FOR NEUROSCIENCE STUDIES, QUEEN'S UNIVERSITY
12:00 — 1:30 PM	LUNCH ON OWN - Posters & Exhibits
	PARALLEL SYMPOSIA
1:30 – 3:00 PM Stanley Park Salon 1	SYMPOSIUM 1Glial handling of neuronal functions: from synapses to blood flowChair: RICHARD ROBITAILLE, Université de MontréalSpeakers:STÉPHANE H. R. OLIET, Université de BordeauxSurface dynamics of the astrocytic glutamate transporter GLT-1MARIE-ÈVE TREMBLAY, Université LavalMicroglial remodeling of neuronal circuits in the healthy brainKEITH MURAI, McGill UniversityNeurons actively sustain the unique molecular and physiological properties of astrocytes in the adult brain through morphogen signaling pathwaysHÉLÈNE GIROUARD, Université de MontréalThe astrocytic contribution to neurovascular coupling in health and disease

1:30 — 3:00 PM Stanley Park Salon 2	SYMPOSIUM 2 Development and Processing of Vocal and Social Communication Sponsored by HOTCHKISS BRAIN INSTITUTE Chair: STEPHEN LOMBER, University of Western Ontario Speakers: YALE E. COHEN, University of Pennsylvania
	Mechanisms Underlying Auditory Decision-Making STEPHEN G. LOMBER, University of Western Ontario Vocalization Processing Along a "What" Processing Pathway in Auditory Cortex SARAH M.N. WOOLLEY, Columbia University Neural Basis and Behavior of Social Communication SUSAN A. GRAHAM, University of Calgary Preschoolers' Real-Time Processing of Vocal Emotional Information
1:30 – 3:00 PM Stanley Park Salon 3	SYMPOSIUM 3Shaping inhibition: new insights into the development and function of GABAergic inhibitory interneurons in the cortexChair: SIMON CHEN, University of California, San DiegoSpeakers:GRAZIELLA DI CRISTO, Université de Montréal Mechanisms regulating GABAergic cell innervation fields in the adolescent brainMELANIE WOODIN, University of Toronto Inhibitory Synaptic Plasticity and Chloride Regulation in the HippocampusMINGSHAN XUE, Baylor College of Medicine Inhibitory synapses equalize excitation-inhibition ratios across cortical neuronsSIMON CHEN, University of California, San Diego Cell-type specific reorganization of inhibitory circuits during motor learning
1:30 — 3:00 PM Cypress Room	SYMPOSIUM 4 Neural stem cells in cognitive repair and aging Chair: DAVID KAPLAN, Hospital for Sick Children Speakers: DAVID KAPLAN, The Hospital for Sick Children Introduction, and Long-term effects of maternal infection and diabetes on neural stem cell pools LIISA GALEA, University of British Columbia Estrogens, memory, neuroplasticity and aging: the good, the bad and the ugly CINDI MORSHEAD, University of Toronto Activating endogenous stem cells to promote brain repair and cognitive recovery DONALD MABBOTT, The Hospital for Sick Children Training the brain to repair itself

3:00 - 3:30 PM	COFFEE BREAK
3:30 – 5:30 PM	POSTERS & EXHIBITS – POSTER SESSION 1 Sponsored by SICK KIDS NEUROSCIENCES & MENTAL HEALTH PROGRAM
5:30 — 7:00 PM	PARALLEL SESSIONS Career Development Sessions of Potential Interest to All (choose your preference)
Stanley Park Salon 1	Updates on Neuroscience Research Funding with representatives from NSERC and CIHR
Stanley Park Salon 2	How to Succeed in Careers in Academia
7:00 — 8:00 PM Bayshore DEF	RECEPTION (non-hosted)
7:30 — 9:30 PM Mahoney & Sons Burrard Landing (1055 Canada Place, Unit #36)	CAN STUDENT SOCIAL Sponsored by Island Medical Program & Division of Medical Sciences, University of Victoria, University of British Columbia, and The Graduate Program in Neuroscience Canadian Society for Molecular Biosciences (CSMB)

TUESDAY, MAY 26, 2015

8:30 – 9:30 AM	PLENARY SYMPOSIUM
	Plasticity, Pain, and Perception
	Chair: JESPER SJÖSTRÖM, McGill University
	Speakers:
	LISA TOPOLNIK, Université Laval
	Synaptic integration and plasticity gradients in dendrites of hippocampal inhibitory interneurons
	MICHAEL SALTER, University of Toronto
	From Receptors to Pain: The Molecular Dynamics of Pain
9:30 — 10:45 AM	COFFEE BREAK – Poster & Exhibit Hall
10:45 — 11:00 AM	BRAIN STAR TALK - YING CHEN, York University
11:00 AM - 12:00 PM	FEATURED PLENARY SPEAKER
Bayshore Ballroom Salon ABC	KAREL SVOBODA, HHMI Janelia Farm Research Campus
	Illuminating the neural circuits underlying tactile decisions
12:00 – 12:30 AM	CAN-ACN ANNUAL GENERAL MEETING
Bayshore Ballroom Salon ABC	All CAN members invited to attend
12:30 — 1:30 PM	LUNCH ON OWN - Posters & Exhibits
	PARALLEL SYMPOSIA

1:30 – 3:00 PM	SYMPOSIUM 5
Stanley Park Salon 1	Imaging brain complexity
	Sponsored by eNEURO
	Chair: PAUL FRANKLAND, The Hospital for Sick Children
	Speakers:
	KASPER PODGORSKI, Howard Hughes Medical Institute
	Comprehensive 3D imaging of synaptic activity in the awake brain
	MAJID MOHAJERANI, University of Lethbridge In vivo optical imaging assessment of mouse cortical-hippocampal dialogue during sleep
	PAUL FRANKLAND, The Hospital for Sick Children
	Pharmacogenetic interrogation of a fear memory network
	JI HYUN KO, University of Manitoba
	Network analysis approach with metabolic PET imaging in neurodegenerative movement disorders
1:30 – 3:00 PM	SYMPOSIUM 6
Stanley Park Salon 2	Are you what you eat? Impact of diet on mesocorticolimbic circuit
	Sponsored by HOTCHKISS BRAIN INSTITUTE
	Chair: STEPHANIE BORGLAND, Hotchkiss Brain Institute
	Speakers:
	THIERRY ALQUIER, University of Montreal
	Regulation of mesolimbic function, reward and feeding by lipids
	CATHARINE WINSTANLEY, University of British Columbia
	Steady-state consumption of a high-fat diet can decrease impulse control even in the absence of excessive weight gain
	STEPHANIE BORGLAND, Hotchkiss Brain Institute
	Compulsive eating reduces inhibitory control of pyramidal neurons of the lateral OFC
	ALAIN DAGHER, McGill University
	Brain Endophenotypes of Obesity
	SYMPOSIUM 7
Stanley Park Salon 3	Establishment and maintenance of cell diversity in sensory system function
	Sponsored by MONTREAL NEUROLOGICAL INSTITUTE
	Chair: JEAN-FRANÇOIS CLOUTIER, Montreal Neurological Institute
	Speakers:
	VALERIE WALLACE, Toronto Western
	Notch and Hedgehog cross talk in neural progenitors converges on Gli2 activity
	MICHEL CAYOUETTE, Institut de recherches cliniques de Montréal A Conserved Regulatory Logic Controls Temporal Identity in Mouse Neural Progenitors
	CHRISTOPHER DEPPMANN, University of Virginia
	Molecular Rheostats Governing Sensory Perception
	JEAN-FRANÇOIS CLOUTIER, McGill University
	Cellular interactions in the control of neural progenitor cell differentiation
	· -

1:30 – 3:00 PM	SYMPOSIUM 8
Cypress Room	Homeostatic plasticity: molecular mechanisms and physiological function
	Sponsored by HOTCHKISS BRAIN INSTITUTE
	Chair: GRAHAM DIERING, John Hopkins University
	Speakers:
	DAVID STELLWAGEN, McGill University
	TNF-mediated suppression of striatal reward dysfunction
	JAIDEEP S. BAINS, Hotchkiss Brain Institute
	State-dependent plasticity in stress circuits
	SALVATORE CARBONETTO, McGill University
	Dystroglycan Mediates Homeostatic Plasticity at GABAergic Synapses
	GRAHAM DIERING, John Hopkins University Homeostatic scaling-down of excitatory synapses during sleep
3:00 - 3:30 PM	COFFEE BREAK – Poster & Exhibit Hall
3:30 – 5:30 PM	POSTERS & EXHIBITS - POSTER SESSION 2 Sponsored by The Society for Neuroscience
5:30 - 6:00 PM	YOUNG INVESTIGATOR AWARD LECTURE
Bayshore Ballroom Salon ABC	MICHAEL GORDON, University of British Columbia
	Integrating taste modalities and motivation in the Drosophila brain
6:00 - 7:00 PM	KEYNOTE LECTURE
Bayshore Ballroom Salon ABC	Sponsored by Djavad Mowafaghian Centre for Brain Health
	CLAY REID, Allen Institute for Brain Science
	Functional Connectomics at the Allen Institute
7:00 — 8:00 PM Bayshore DEF	RECEPTION (non-hosted)

WEDNESDAY, MAY 27, 2015

8:30 — 9:30 AM Bayshore Ballroom Salon ABC	PLENARY SYMPOSIUM	
	Chair: MICHAEL GORDON, University of British Columbia	
	Sensorimotor processing in model systems	
		Speakers:
	MEI ZHEN, University of Toronto	
	The Development and Operation of the C. elegans Motor System	
		DOUGLAS ALTSHULER, University of British Columbia
	Visual motion perception in avian flight	
	9:30 — 10:45 AM	COFFEE BREAK - Poster & Exhibit hall
	10:45 — 11:00 AM	BRAIN STAR TALK - ROBERT P. BONIN, Institut Universitaire en Santé Mentale de Québec

11:00 AM — 12:00 PM Bayshore Ballroom Salon ABC	FEATURED PLENARY SPEAKER KRISTIN SCOTT, University of California, Berkeley Taste processing in Drosophila
12:00 – 1:30 PM	LUNCH ON OWN - Posters & Exhibits
	PARALLEL SYMPOSIA
1:30 – 3:00 PM Stanley Park Salon 1	SYMPOSIUM 9 Regulatory mechanisms in cortical neurogenesis Sponsored by DEPARTMENT OF MEDICAL NEUROSCIENCE, DALHOUSIE UNIVERSITY Chair: ANGELO IULIANELLA, Dalhousie University Speakers: CAROL SCHUURMANS, University of Calgary Cortical lineages are primed by the competing lineage determinants Neurog2 and Ascl1 STEFANO STIFANI, McGill University Regulation of neurogenic and anti-neurogenic transcription factors during murine cortical neurogenesis RUTH SLACK, University of Ottawa Mitochondrial -mediated regulation of stem cell maintenance and cell fate decisions DAVID PICKETTS, Ottawa Hospital Research Institute Defining the role of chromatin remodeling proteins in balancing progenitor expansion with differentia- tion during cortical neurogenesis
1:30 – 3:00 PM Stanley Park Salon 2	SYMPOSIUM 10 New insights into classical memory issues Chair: KARIM NADER, McGill University Speakers: CATHARINE RANKIN, University of British Columbia Rethinking habituation: New Insights into the Complexity of the Simplest Form of Learning KARIM NADER, McGill University Ongoing Protein Synthesis is Required to Enable Retrieval of Long Term Memories VADIM BOLSHAKOV, McLean Hospital, Harvard Medical School Diminishing fear by disrupting retrieval-induced synaptic restabilization SATOSHI KIDA, Tokyo University of Agriculture Erasure of recent and remote fear memory by enhancing forgetting through increase in adult hippo- campal neurogenesis

1:30 - 3:00 PM	SYMPOSIUM 11
Stanley Park Salon 3	Linking nervous system development with function
	Sponsored by MONTREAL NEUROLOGICAL INSTITUTE
	Chair: ARTUR KANIA, Institut de recherches cliniques de Montréal
	Speakers:
	FREDA MILLER, Hospital for Sick Children
	Understanding cognitive disorders: from neural stem cells to neurons
	YING ZHANG, Dalhousie University
	Distinctive developmental pathways of functional subpopulations of V3 interneurons in the mouse spinal cord
	DOUGLAS ALLAN, University of British Columbia
	Genetic mechanisms underlying sexually dimorphic development of female-specific neural populations in Drosophila
	EDWARD RUTHAZER, McGill University
	How sensory experience controls circuit wiring in the developing visual system
1:30 – 3:00 PM	SYMPOSIUM 12
Cypress Room	Dysregulated synaptic plasticity in models of brain disorders
	Sponsored by TUCKER-DAVIS TECHNOLOGIES
	Chair: ZHENGPING JIA , The Hospital for Sick Children, University of Toronto
	Speakers:
	ÉRIC C. DUMONT, Queen's University
	Altered plasticity at glutamate and GABA synapses in compulsive behaviours in rats
	MIN ZHUO, University of Toronto
	Aberrant synaptic plasticity and treatment in animal models of neuropathic pain and anxiety
	MARJA D. SEPERS, University of British Columbia
	Endocannabinoid-mediated synaptic plasticity at cortico-striatal synapses in the YAC128 model of Huntington's disease
	GRAHAM L COLLINGRIDGE, University of Bristol
	Dysrequlated synaptic plasticity in models of Alzheimer's disease

- END OF MEETING -

PLENARY SYMPOSIA AND KEYNOTE SESSIONS

SUNDAY, MAY 24

PRESIDENTIAL LECTURE

MELVYN GOODALE, University of Western Ontario How We See and Hear Stuff: Visual and Auditory Routes to Understanding the Material Properties of Objects

Sponsored by:

ONTARIO BRAIN INSTITUTE

Almost all studies of object recognition, particularly in brain imaging, have focused on the geometric structure of objects (i.e. 'things'). Until recently, little attention has been paid to the recognition of the materials from which objects are made (i.e. 'stuff'), information that is often signalled by surfacebased visual cues (the sheen of polished metal) as well as auditory cues (the sound of water being poured into a glass). But knowledge about stuff (the material properties of objects) has profound implications, not only for understanding what an object is, but also for the planning of actions, such as the setting of initial grip and load forces during grasping. In recent years, our lab has made some headway in delineating the neural systems that mediate the recognition of stuff (as opposed to things), not only in sighted people but also in blind individuals who use echoes from tongue clicks to recognize the material properties of objects they encounter. I will discuss evidence from both neuropsychological and fMRI studies demonstrating that lateral occipital regions in the ventral stream play a critical role in processing the 3-D structure and geometry of objects, whereas more anteromedial regions (particularly areas in the parahippocampal gyrus and collateral sulcus) are engaged in processing visual and auditory cues that signal the material properties of objects.

MONDAY, MAY 25

PLENARY SYMPOSIUM

Chair: MIRIAM SPERING, University of British Columbia Seeing and moving: how the brain controls vision and gaze

BRIAN CORNEIL, Robarts Research Institute

Through the looking glass: reflections of sensory and cognitive processing in the motor periphery

The oculomotor system, which rapidly moves or stabilizes the line of sight, is one of the best-understood motor systems in the human brain. While this system is often studied via discrete saccadic eye movements made with the head restrained, orienting of the line of sight can be brought about by coordinated movements of the eyes, head, and body, and may also incorporate subtle changes in pupil diameter. A key oculomotor area is the superior colliculus (SC), which coordinates an ancient orienting reflex via outputs that distribute widely within the brainstem and spinal cord to saccadic and other premotor and autonomic circuits. There are key differences in the response properties of such downstream circuits, with saccadic circuits in particular

having the highest threshold for engagement. Because of such differences, non-saccadic circuits are, somewhat paradoxically, more responsive to subtle changes in upstream SC signaling. In my talk, I will illustrate how this framework provides a unifying explanation to a variety of curious findings, including short-latency neck and limb muscle recruitment time-locked to the onset of visual stimuli, the modulation of such responses with cognitive state, and the elaboration of non-saccadic responses following sub-threshold stimulation of the frontal cortex.

PLENARY SYMPOSIUM

CHRISTOPHER PACK, McGill University A sensorimotor role for oscillations in the visual cortex

Brain activity is often observed to be oscillatory, meaning that it increases and decreases in strength at regular intervals. Oscillations at particular frequencies often vary in strength depending on a sensory stimulus or the cognitive state of the subject. As a result, oscillations have figured prominently into many models of brain function, particularly the hypothesis that oscillations provide a way to synchronize the timing of long-range communication across neural ensembles.

In this presentation I will focus on the spatial structure of oscillations measured via the local field potentials (LFP) in primate visual cortex. In particular I will discuss recent recordings from area V4 of monkeys implanted with chronic multi-electrode recording arrays. Our results show that there is a spatial pattern of oscillatory activity across retinotopic maps of visual space, and that this pattern is reorganized by the execution of saccadic eye movements. Saccade-related LFP patterns in turn seem to regulate the timing of single-neuron spiking activity, providing a possible basis for optimizing perisaccadic visual perception. I will suggest that well-known phenomena such as perisaccadic remapping, saccadic suppression, and saccadic momentum are consistent with a role for oscillations in linking oculomotor commands with visual processing.

FEATURED PLENARY SPEAKER

MAYANK MEHTA, UCLA From Virtual Reality to Reality: How Neurons Mak

From Virtual Reality to Reality: How Neurons Make Maps

Sponsored by: CENTRE FOR NEUROSCIENCE STUDIES, QUEEN'S UNIVERSITY

Numerous processes, in addition to the firing of action potentials, that are All animals move through space. What are the sensory and biophysical mechanisms that generate mental maps of space? How do these maps contribute to behavior? Despite tremendous progress these questions have not been fully resolved, partly because it is difficult to precisely measure, let alone manipulate, the wide range of sensory and motor variables that change when subjects move in space. Hence, we have developed a

noninvasive, immersive and multisensory virtual reality system where precisely controlled stimuli determine the surrounding virtual space, and nonspecific stimuli are spatially uninformative. We simultaneously measured rats' behavioral performance and the activities of thousands of neurons from the hippocampal circuit while rats performed complex tasks, including the Virtual Morris Water Maze task. We also developed computational techniques to decipher the emergent neural dynamics. This integrative, experiment-theory approach provided many surprising results. For example, when only the visual landmarks provide spatial information, more than half of hippocampal neurons shut down and the remaining active neurons are unable to form robust spatial maps, contrary to commonly held theories. Instead, additional multisensory cues are required to generate spatially selective activity. Indeed, inclusion of consistent locomotion cues generates spatial maps, but they encode relative distance traveled, not an allocentric representation of space. Theta rhythm too is significantly altered in virtual reality. We propose a "multisensory-pairing" hypothesis for hippocampal function where the entorhinal-hippocampal circuit forms rapid associations between multisensory stimuli using both cooperative and competitive mechanisms. This can explain the formation of diverse representations of space under different conditions.

TUESDAY, MAY 26

PLENARY SYMPOSIUM

Chair: JESPER SJOSTROM, McGill University Plasticity, Pain, and Perception

MIKE SALTER, Sick Kids From Receptors to Pain: The Molecular Dynamics of Pain

Neuron-microglial interactions are increasingly recognized as being key for physiological and pathological processes in the central nervous system. Microglia have been found to play a causal role in neuropathic pain behaviours resulting from peripheral nerve injury, and a core neuron-microglia-neuron signaling pathway has been elucidated. Within the dorsal horn, microglia suppress neuronal inhibition by a cascade involving activation of microglial P2X4 receptors causing the release of brain derived neurotrophic factor (BDNF). BDNF acts on trkB receptors which leads to a rise in intracellular chloride concentration in dorsal horn nociceptive output neurons, transforming the response properties of these neurons. In addition to suppressing inhibition, peripheral nerve injury causes activity-dependent facilitation at dorsal horn glutamatergic synapses which enhances nociceptive transmission. This enhancement is mediated by intracellular signaling networks involving serine/threonine and tyrosine kinases within nociceptive transmission neurons. Key for this enhancement is facilitation of NMDA receptor function by Src family tyrosine kinases. Recently we have discovered that microglia-to-neuron signaling is not only critical for pain hypersensitivity after peripheral nerve injury but also for the paradoxical hyperalgesic effect of morphine and other opioids. We anticipate that by targeting microglia-neuron signaling pathways new therapeutic strategies for chronic pain as well as its comorbid sequelae may be developed.

LISA TOPOLNIK, Universite Laval Synaptic integration and plasticity gradients in dendrites of hippocampal inhibitory interneurons

Hippocampal interneurons play a critical role in the spatiotemporal organization of principal cell assemblies and formation of memory fields. The synaptic mechanisms responsible for recruitment of distinct subtypes of interneurons in governing network activity are a matter of intense investigation, as it is still largely unknown how do interneurons integrate multiple inputs during specific brain states. In addition, understanding the mechanisms of multiple forms of synaptic plasticity experienced by interneurons and providing for functional segregation of GABAergic inputs converging onto principal cells remain an open question. Using two-photon microscopy and whole-cell patch-clamp recordings in combination with computational simulations, we have examined the mechanisms of synaptic integration and plasticity along a somatodendritic axis of hippocampal basket cells (BCs). Significant fluctuations in the summation of excitatory inputs through a variable contribution of GluA2-lacking AMPA vs NMDA receptors have been detected in dendritic branches of parvalbumin-positive BCs, with a direct impact on the synapse-specific integration and direction of long-term plasticity. In contrast, cholecystokinin-positive BCs have shown a variable gain function for excitatory inputs but also a somatodendritic gradient in the expression of Cav3.1 Ca2+ channels, which controlled LTP induction at inhibitory synapses. The lifetime of Ca2+ elevations in dendrites of BCs was critical in pacing down their activity through the cell type-specific induction of depression at excitatory or potentiation at inhibitory synapses. These data indicate that afferent inputs can differentially activate the two subtypes of BCs through the cell type- and input-specific dendritic mechanisms, providing for flexible recruitment of BCs during network activity.

FEATURED PLENARY SPEAKER

KAREL SVOBODA, HHMI Janelia Farm Research Campus Illuminating the neural circuits underlying tactile decisions

Optical methods are revolutionizing our understanding of neural circuits. Cellular imaging allows measurements of cording of information in populations of defined cell types and subcellular structures. Optogenetic manipulations permit testing for causality of patterns of neural activity and behavior. We use these tools to dissect the circuit mechanisms underlying tactile decision making in behaving mice.

KEYNOTE LECTURE

CLAY REID, Allen Institute for Brain Science Functional Connectomics at the Allen Institute

Sponsored by:

DJAVAD MOWAFAGHIAN CENTRE FOR BRAIN HEALTH

Djavad Mowafaghian CENTRE FOR BRAIN HEALTH

PLENARY SYMPOSIA AND KEYNOTE SESSIONS

The current decade is emerging as golden age of neuroanatomy. Connectomics began was defined a decade ago, mostly as an aspiration for the future, but is likely to emerge as a mature field in this decade. In the first published use of the term (Sporns, Tononi, and Kotter, 2005 PLos Comp Biol), it was recognized that connectomics should be considered on multiple scales, from the macroscale of entire brains to the microscale of individual synaptic connections between neurons. At the Allen Institute, we have begun a ten-year program to study the cerebral cortex of mice and humans. The mouse program, called MindScope, concentrates on the cortico-thalamic visual system and seeks to examine the computations that lead from visual input to behavioral responses. In this program, there is a strong emphasis on neuroanatomy, or connectomics at a macro- and microscale. Already a large-scale study of mesoscale connectivity in the mouse brain has been completed (Oh et al., 2014 Nature). Future work will include further mesoscale connectivity atlases that concentrate on the mouse visual system, as well as microscale connectivity of local cortical circuits. At a microscale, we have demonstrated that the relationship between structure and synaptic connectivity can be studied in local cortical circuits by combining in vivo physiology with subsequent network anatomy with electron microscopy (Bock et al., Nature, 2011; and subsequent studies), leading towards a functional connectome (Reid, 2012, Neuron). I will examine the near-term and long-term prospects for microscale connectomics and argue that connectomics at all scales must be combined with functional studies to fully exploit its great promise.

WEDNESDAY, MAY 27

PLENARY SYMPOSIUM

Chair: MICHAEL GORDON, University of British Columbia Sensorimotor processing in model systems

MEI ZEN, University of Toronto

The Development and Operation of the C. elegans Motor System

Animals sense environments and respond with changes in motility. These sensorimotor behaviors are fundamental to life, and governed by nervous systems. All nervous systems undergo postnatal development, predicting changes in circuit connections. There is however surprisingly little understanding of how synaptic wiring changes, and how they affect behaviors during development.

In C. elegans, the 302 neuron adult nervous system was reconstructed by serial section electron microscopy (EM), yielding the first connectome for an entire animal. Yet the adult nervous system starts from 220 neurons at birth; the animal also grows fourfold in size, adding new glia, muscles and epidermis. Throughout postnatal development, the nervous system remains functional, even as new neurons, glia and non-neuronal partners integrate into existing circuits.

Combining EM, calcium imaging, optogenetics and molecular genetics, we are addressing how the growing nervous system remodels and regulates motor behaviors across development. Applying acquired insights on motor circuit function, we have further established relevant C. elegans models for human disorders, and applying them to address underlying physiological defects.

DOUGLAS ALTSHULER, University of British Columbia Visual motion perception in avian flight

Flying birds use diverse sensory information to guide their flight, and the available evidence suggests that visual information plays a prominent role in flight control. For example, the avian midbrain in general, and the optic tectum in particular, are relatively much larger than homologous regions in other vertebrates. Although there is considerable information available about the neural circuitry for sensing and processing visual motion in birds, there is a major gap in our understanding of how motion perception is used during flight. Our research aims to unify electrophysiological and immunohistochemical investigations of neural circuitry with behavioural studies of visual guidance. We work with hummingbirds and zebra finches, which differ in flight behaviour and neuroanatomy but have fast wingbeat frequencies and similar muscle physiology. Our most recent work has demonstrated that hummingbirds are extraordinarily sensitive to global visual motion during hovering flight, even when the motion is small and displayed in the presence of prominent stationary features. Current research is focused on how visual motion processing guides other flight modes and flight mode transitions, and how cellular responses to visual motion differ across flight behaviours and species.

FEATURED PLENARY SPEAKER

KRISTIN SCOTT, UC Berkeley Taste processing in Drosophila

The ability to identify food that is nutrient-rich and avoid toxic substances is essential for an animal's survival. Although olfaction and vision contribute to food detection, the gustatory system acts as a final checkpoint control for food acceptance or rejection. The fruit fly Drosophila melanogaster tastes many of the same stimuli as mammals and provides an excellent model system for comparative studies of taste detection. The relative simplicity of the fly brain and behaviors, along with the molecular genetic and functional approaches available in Drosophila, allow the examination of gustatory neural circuits from sensory input to motor output. We have utilized a combination of molecular, behavioral, and calcium imaging studies to determine the taste ligands that different gustatory neurons detect and how taste information is processed in the higher brain. More recently, we have begun to examine how hunger, satiety and learning influence activity in taste circuits and regulate feeding decisions. These studies provide insight into how taste compounds are detected and processed by the brain.

PARALLEL SYMPOSIA

Please note: the individual abstracts of all symposium presentations listed below are available on the CAN Conference App, and on the CAN-ACN website.

MONDAY, MAY 25

SYMPOSIUM 1: Glial handling of neuronal functions: from synapses to blood flow

Chair: RICHARD ROBITAILLE, Université de Montréal

Overview:

Glia are very dynamic cells that regulate a large variety of neuronal functions. This workshop will highlight some recent aspect of the dynamic and pluripotent roles that glial cells play in the regulation of various neuronal functions. This will span from the fine regulation of molecular organisation at synapses to the whole in vivo brain activity and functions. Stéphane Oliet will discuss the dynamic regulation of glutamate transporters in processes of astrocytes while Keith Murai will discuss the role of glial interactions in shaping dendritic spines. Marie-Eve Tremblay will discuss the interplay between astrocytes and microglial cells in the regulation of synapse elimination and Hélène Girouard will then discuss the regulation of blood flow by astrocytes as a function of neuronal activity. This would represent an opportunity to have a workshop regrouping young Canadian investigators (Girouard and Tremblay) with more senior researchers (Oliet and Murai).

Speakers:

STÉPHANE H. R. OLIET, Université de Bordeaux Surface dynamics of the astrocytic glutamate transporter GLT-1

MARIE-ÈVE TREMBLAY, Université Laval Microglial remodeling of neuronal circuits in the healthy brain

KEITH MURAI, McGill University

Imaging and augmenting collateral blood flow in the brain during acute ischemic stroke

HÉLÈNE GIROUARD, Université de Montréal

Seizures induce a severe ischemic/hypoxic episode

SYMPOSIUM 2: Development and Processing of Vocal and Social Communication

Chair: STEPHEN LOMBER, University of Western Ontario

Sponsored by: HOTCHKISS BRAIN INSTITUTE

Overview:

There is tremendous information carried in all vocalizations. For instance, we are very sensitive to human voices and can readily recognize others by listening to their voice. Our vocal inflections also have emotional content which relay how we feel, and what we hope to elicit in others. This means that our communication system is fundamentally a social one, and many other social animals share the basic properties of human vocal communication. This conceptual link allows us to study the communication systems in humans and other species. Recently, much progress has been made in understanding the neural mechanisms underlying various components of communication in both humans and non-human animals. These studies reveal how the brain extracts, represents, and encodes not only the physical features of a communication signal but also their perceptual representations and other abstract quantities (eg, semantic meaning). In this symposium, we will discuss new and exciting data that identify these important relationships across a variety of animals (songbirds, cats, monkeys, and humans) using an integrative approach of psychophysical, electrophysiological, and functional imaging techniques.

Speakers:

YALE E. COHEN, University of Pennsylvania Mechanisms Underlying Auditory Decision-Making

STEPHEN G. LOMBER, University of Western Ontario *Vocalization Processing Along a "What" Processing Pathway in Auditory Cortex*

PARALLEL SYMPOSIA

SARAH M.N. WOOLLEY, Columbia University Neural Basis and Behavior of Social Communication

SUSAN A. GRAHAM, University of Calgary, Hotchkiss Brain Institute Preschoolers' Real-Time Processing of Vocal Emotional Information

SYMPOSIUM 3: Shaping inhibition: new insights into the development and function of GABAergic inhibitory interneurons in the cortex

Chair: SIMON CHEN, University of California

Overview:

GIn the mammalian cortex, GABAergic inhibitory interneurons are remarkably diverse in terms of morphology, connectivity, and physiological properties. In addition to their recognized roles in maintaining the E/I balances, recent studies have suggested that different subtypes of inhibitory interneurons can be involved in sensory processing, learning and memory, and cognitive behavior. In this symposium, speakers will present data using a variety of approaches, including genetic manipulations, electrophysiology, optogenetics, and in vivo two-photon imaging to provide new insights into the development and function of GABAergic inhibitory interneurons. Dr. Graziella Di Cristo will discuss how neural activity regulates the innervations of cortical basket cells. Dr. Melanie Woodin will address the molecular mechanisms of synaptic plasticity of inhibitory synapses in the hippocampus. Dr. Mingshan Xue will move into in vivo system and show how different subtypes of interneurons equalize E/I ratios during visual processing. Dr. Simon Chen will focus on the role of subtype-specific reorganization of inhibitory circuits during motor learning in awake and behaving mice.

Speakers:

GRAZIELLA DI CRISTO, Université de Montréal Mechanisms regulating GABAergic cell innervation fields in the adolescent brain MELANIE WOODIN, University of Toronto Inhibitory Synaptic Plasticity and Chloride Regulation in the Hippocampus MINGSHAN XUE, Baylor College of Medicine Inhibitory synapses equalize excitation-inhibition ratios across cortical neurons SIMON CHEN, University of California Cell-type specific reorganization of inhibitory circuits during motor learning

SYMPOSIUM 4: Neural stem cells in cognitive repair and aging

Chair: DAVID KAPLAN, Hospital for Sick Children

Overview:

An evolving body of work indicates that resident stem cells function to maintain and in some cases repair tissues. These findings have led to the idea that if we could recruit these stem cells, then we could enhance repair or regeneration. For example in rodents, exercise, learning, and enriched environment enhance, and stress and aging suppress neurogenesis or oligodendrogenesis. Here, Liisa Galea will present data on how estrogens affect hippocampus-dependent neuroplasticity and cognition and how reproductive experience moderates those effects in aging. Cindi Morshead will present on how metformin repairs stroke damage in postnatal mice by enhancing neurogenesis. Don Mabbott will talk about his recent findings (in review in New Eng J Med) on how exercise greatly improves cognition and increases hippocampal volume and white matter in children with brain injuries. David Kaplan will provide a short overview and short talk on maternal influences on adult neurogenesis in progeny.

Speakers:

DAVID KAPLAN, The Hospital for Sick Children Introduction, and Long-term effects of maternal infection and diabetes on neural stem cell pools LIISA GALEA, University of British Columbia

Estrogens, memory, neuroplasticity and aging: the good, the bad and the ugly

CINDI MORSHEAD, University of Toronto Activating endogenous stem cells to promote brain repair and cognitive recovery

DONALD MABBOTT, The Hospital for Sick Children Training the brain to repair itself

TUESDAY, MAY 26

SYMPOSIUM 5: Imaging brain complexity

Chair: PAUL FRANKLAND, The Hospital for Sick Children

Sponsored by: eNEURO

Overview:

The brain is a complex organ, containing billions of neurons, each connected through synapses to several thousand other neurons. Therefore an appreciation of how the brain works necessarily involves understanding how information is integrated both in individual neurons, as well as across brain regions. This symposium brings together 4 Canadian researchers tackling this complexity at both the micro- and macroscales. Using new tools to image dendritic activity at high speed in vivo, Podgorski will show how sensory inputs are integrated in a single neuron in the developing Xenopus. Frankland has developed whole brain activity dependent mapping approaches in mice, and used graph theoretical approaches to define functional networks engaged by fear memory. Mohajerani has developed voltage-sensitive dye wide-field imaging approaches to investigate hippocampal-cortical interactions during sleep. Ko uses FDG-PET in patients with movement disorders, and will present graph theoretical analyses to understand the underlying cause of aberrant network activity.

Speakers:

KASPER PODGORSKI, Howard Hughes Medical Institute Comprehensive 3D imaging of synaptic activity in the awake brain MAJID MOHAJERANI, University of Lethbridge

In vivo optical imaging assessment of mouse cortical-hippocampal dialogue during sleep

PAUL FRANKLAND, The Hospital for Sick Children Pharmacogenetic interrogation of a fear memory network

JI HYUN KO, University of Manitoba

Network analysis approach with metabolic PET imaging in neurodegenerative movement disorders

SYMPOSIUM 6: Are you what you eat? Impact of diet on mesocorticolimbic circuit

Chair: STEPHANIE BORGLAND, Hotchkiss Brain Institute

Sponsored by: HOTCHKISS BRAIN INSTITUTE

Overview:

Obesity can be viewed as a disorder of decision-making. Feeding is not only governed by homeostatic energy signals, but also by stress, variety and availability of low cost calorically dense foods, habitual factors and even previous diet that govern our decisions of what and when to consume. This symposium will explore the neurobiological mechanisms of how diet can influence our feeding behavior. Dr. Fulton will demonstrate that lipid type can influence signaling and behavior within the mesolimbic system. Dr. Winstanley will demonstrate that impulse control is affected in rats consuming a high fat diet. Dr. Borgland will demonstrate that a cafeteria diet promotes compulsive eating and dysfunction in the orbitofrontal cortex. Finally, Dr. Dagher will show functional imaging data on decision-making, food valuation, and appetite control as they relate to weight gain in humans. Together, this symposium will implicate diet-induced alterations in the mesocriticolimbic system resulting in changes in ingestive behaviour.

PARALLEL SYMPOSIA

Speakers:

THIERRY ALQUIER, University of Montreal Regulation of mesolimbic function, reward and feeding by lipids CATHARINE WINSTANLEY, University of British Columbia Steady-state consumption of a high-fat diet can decrease impulse control even in the absence of excessive weight gain

STEPHANIE BORGLAND, Hotchkiss Brain Institute Compulsive eating reduces inhibitory control of pyramidal neurons of the lateral OFC

ALAIN DAGHER, McGill University *Brain Endophenotypes of Obesity*

SYMPOSIUM 7: Establishment and maintenance of cell diversity in sensory system function

Chair: JEAN-FRANÇOIS CLOUTIER, Montreal Neurological Institute

Sponsored by: MONTREAL NEUROLOGICAL INSTITUTE AND HOSPITAL

Overview:

The degeneration of neurons in sensory systems and their associated pathologies, such as loss of vision and olfaction, represent a growing problem in our aging population. The development of stem cell based regenerative therapies in sensory systems requires a fundamental understanding of the molecular mechanisms underlying the generation and function of these neurons. This symposium will describe how both intrinsic and environmental factors impinge on the generation and function of neurons in the visual, olfactory, and somatosensory systems. Dr. Cayouette will present a novel transcriptional cascade controlling temporal identity progression in retinal progenitor cells and how it might improve strategies for cell replacement therapy. Dr. Wallace will discuss the importance of maintaining morphogen responsiveness for the production of neurons in the retina. Dr. Deppmann will discuss the function of TNF receptor family members in the formation of somatosensory neurons and their importance for proprioception and touch sensation. Dr. Cloutier will describe how cell-cell interactions influence both the generation and survival of sensory neurons in the olfactory epithelium.

Speakers:

VALERIE WALLACE, Toronto Western

Notch and Hedgehog cross talk in neural progenitors converges on Gli2 activity

MICHEL CAYOUETTE, | Institut de recherches cliniques de Montréal

A Conserved Regulatory Logic Controls Temporal Identity in Mouse Neural Progenitors

CHRISTOPHER DEPPMANN, University of Virginia

Molecular Rheostats Governing Sensory Perception

JEAN-FRANÇOIS CLOUTIER, McGill University

Cellular interactions in the control of neural progenitor cell differentiation

SYMPOSIUM 8: Homeostatic plasticity: molecular mechanisms and physiological function

Chair: GRAHAM DIERING, John Hopkins University

Sponsored by:

HOTCHKISS BRAIN INSTITUTE

Overview:

Synapses have the capacity to alter their strength in a process called synaptic plasticity. Plasticity can occur at individual synapses in the form of LTP and LTD, forming the cellular basis of learning and memory, or more globally during homeostatic plasticity in order to regulate neuronal firing rates and network activity. Homeostatic plasticity was originally described as a scaling of excitatory synapses. Recent investigations have shown that homeostatic plasticity involves different synapse types, occurs over different spatial scales and in multiple brain regions. Despite advances in understanding the molecular mechanisms underlying homeostatic plasticity, its impact on information processing or on learning and memory through interaction with LTP/LTD remain largely unknown. This symposium will highlight the various forms and functions of homeostatic plasticity, including plasticity of excitatory and inhibitory synapses, the involvement of glia, and the role of this plasticity type in different physiological states such as inflammation, stress and sleep.

Speakers:

DAVID STELLWAGEN, McGill University TNF-mediated suppression of striatal reward dysfunction

JAIDEEP S. BAINS, Hotchkiss Brain Institute State-dependent plasticity in stress circuits

SALVATORE CARBONETTO, McGill University

Dystroglycan Mediates Homeostatic Plasticity at GABAergic Synapses

GRAHAM DIERING, John Hopkins University

Homeostatic scaling-down of excitatory synapses during sleep

WEDNESDAY, MAY 27

SYMPOSIUM 9: Regulatory mechanisms in cortical neurogenesis

Chair: ANGELO IULIANELLA, Dalhousie University

Sponsored by:

DEPARTMENT OF MEDICAL NEUROSCIENCE, DALHOUSIE UNIVERSITY

Overview:

The regulation of neurogenesis in the developing cerebral cortex is highly dynamic and complex, being influenced by gene regulatory programs interacting with epigenetic mechanisms to establish cell fates. The symposium with open with a lecture from Dr. Carol Schuurmans (University of Calgary) on her recent findings concerning the role of the proneural factors Neurog2 and Ascl1 in priming cell lineage selection in the neocortex. This will be followed by a lecture by Dr. Stefano Stifani (McGill University) on mechanisms that antagonize the functions of proneural factors during cortical neurogenesis and regulate the transition from neurogenesis to gliogenesis. The third lecture by Dr. Ruth Slack (University of Ottawa) will highlight recent findings that mitochondrial function impinges on cortical cell fate decisions. The final talk of the session by Dr. David Picketts (Ottawa Hospital Research Institute) will discuss the crucial role of chromatin remodelling in balancing cortical progenitor proliferation with differentiation.

Speakers:

CAROL SCHUURMANS, University of Calgary Cortical lineages are primed by the competing lineage determinants Neurog2 and Ascl1 STEFANO STIFANI, McGill University

Regulation of neurogenic and anti-neurogenic transcription factors during murine cortical neurogenesis

PARALLEL SYMPOSIA

RUTH SLACK, University of Ottawa

Mitochondrial -mediated regulation of stem cell maintenance and cell fate decisions

DAVID PICKETTS, Ottawa Hospital Research Institute

Defining the role of chromatin remodeling proteins in balancing progenitor expansion with differentiation during cortical neurogenesis

SYMPOSIUM 10: New insights into classical memory issues

Chair: KARIM NADER, McGill University

Overview:

This symposium brings together a group of internationally renowned researchers who study cutting edge issues in memory processing. The talks will discuss issues involved from simple to complex systems. Specifically, using wild-type and mutant strains of c. elegans, Prof. Rankin explores nuanced issues on the molecular neurobiology of memory consolidation mechanisms. Using a technique that enables single cell resolution over brain areas, Prof Sauvage will discuss the specific areas implicated within the medial temporal lobe mediating memory tasks. Prof Bolshakov will discuss a completely new finding in neuroplasticity. All previous work has shown that the molecular and cellular correlates induced by learning are reversed when amnesia is induced. Prof Bolshakov found that learning induced changes in pre-synaptic efficacy. Surprisingly, he found that reconsolidation blockade led to a reduction in the post-synaptic mechanisms but spared the pre- synaptic changes induced by learning. The pioneering work in forgetting byProf Kida shows that forgetting is a neurobiologically conserved phenomenon and not brain dysfunction as commonly believed.

Speakers:

CATHARINE RANKIN, University of British Columbia *Rethinking habituation: New Insights into the Complexity of the Simplest Form of Learning*

KARIM NADER, McGill University

Ongoing Protein Synthesis is Required to Enable Retrieval of Long Term Memories

VADIM BOLSHAKOV, McLean Hospital, Harvard Medical School

Diminishing fear by disrupting retrieval-induced synaptic restabilization

SATOSHI KIDA, Tokyo University of Agriculture

Erasure of recent and remote fear memory by enhancing forgetting through increase in adult hippocampal neurogenesis

SYMPOSIUM 11: Linking nervous system development with function

Chair: ARTUR KANIA, Institut de recherches cliniques de Montréal

Sponsored by: MONTREAL NEUROLOGICAL INSTITUTE

Overview:

Nervous system developmental mechanisms have been studied for many years now, but their precise link to specific neural circuit functions remains unclear. Considering the high number of neurological disorders that arise because of developmental defects, this symposium seeks to link specific developmental events and aspects of neural circuit function. We will present evidence tying the molecular specification of spinal interneuron subclasses to locomotor circuits. We will discuss the impact of developmental sensory experience on the connectivity and function of the vertebrate visual system. We will discuss the dimorphic cellular and genetic mechanisms that direct the formation of a sex-specific neuronal circuit required in females for reproduction. Finally, we will explore how molecular mechanisms controlling neuronal stem cell development contribute to the function of cognitive neural circuits. The emergent theme of this symposium is that linking developmental processes with circuit function is essential to understanding neurodevelopmental disorders.

Speakers:

FREDA MILLER, Hospital for Sick Children Understanding cognitive disorders: from neural stem cells to neurons

YING ZHANG, Dalhousie University

Distinctive developmental pathways of functional subpopulations of V3 interneurons in the mouse spinal cord

DOUGLAS ALLAN, University of British Columbia

Genetic mechanisms underlying sexually dimorphic development of female-specific neural populations in Drosophila

EDWARD RUTHAZER, McGill University

How sensory experience controls circuit wiring in the developing visual system

SYMPOSIUM 12: Dysregulated synaptic plasticity in models of brain disorders

Chair: ZHENGPING JIA, The Hospital for Sick Children, University of Toronto

Sponsored by: TUCKER DAVIS TECHNOLOGIES

Overview:

Synaptic plasticity is a fundamental neural process critical for brain development and function. Dysregulations in synaptic plasticity are closely associated with many neurological and mental disorders, including Alzheimer's disease (AD), Huntington's disease (HD), Neuropathic pain and drug abuse, which represent a major burden to our society. Therefore, investigating synaptic plasticity and how it is altered in these brain disorders is a key to the understanding and treatment of these diseases. In this symposium, we will bring together leading researchers working on synaptic plasticity in various animal models of brain disorders; Dr. Dumont will present studies on compulsive behaviors in rats including compulsive drug intake, Dr. Min on neuropathic pain, Dr. Sepers on transgenic models of HD, and Professor Collingridge on current state of synaptic plasticity and mechanisms underlying synaptic degeneration that is a core feature of AD. Therefore, the proposed symposium will be timely and of interest to a wide range of audience.

Speakers:

ÉRIC C. DUMONT, Queen's University Altered plasticity at qlutamate and GABA synapses in compulsive behaviours in rats

MIN ZHUO, University of Toronto

Aberrant synaptic plasticity and treatment in animal models of neuropathic pain and anxiety

MARJA D. SEPERS, University of British Columbia

Endocannabinoid-mediated synaptic plasticity at cortico-striatal synapses in the YAC128 model of Huntington's disease

GRAHAM L COLLINGRIDGE, University of Bristol

Dysregulated synaptic plasticity in models of Alzheimer's disease

POSTER AUTHOR INDEX

POSTER SESSIONS

Session 1:	Monday May 25
	9:30 - 10:45 & 3:30 - 5:30
Session 2:	Tuesday May 26
	9:30 - 10:45 & 3:30 - 5:30

The poster board numbers work in the following way: Session – Theme – Board number (E.g 1-A-85)

Location of the individual poster boards indicated on poster board floor plans at the back of the handbook.

All abstracts are available to view online at can-acn.org, or on the CAN App - scan the QR code to download the app or search for 'Podium Conferences' in the App Store.

POSTER THEMES

- A Development
- B Neural Excitability, Synapses, and Glia: Cellular Mechanisms
- C Disorders of the Nervous System
- D Sensory and Motor Systems
- E Homeostatic and Neuroendocrine Systems
- F Cognition and Behavior
- G Novel Methods and Technology Development
- IBRO International Brain Research Organization

AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER
Abdelfattah, A	1-G-161	Bailey, C	1-B-24, 1-C-70	Bialecki, J	2-B-13, 2-B-48	Brinks, D	1-G-161
Abizaid, A	2-E-130, 2-F-141	Baillargeon, J	2-C-67	Bignell, W	1-B-24, 1-C-70	Brocardo, P	1-C-89
Acharjee, S	2-C-52, 2-C-94	Baimel, C	1-B-15	Binsted, G	2-F-135	Brown, C	1-C-63, 1-C-83,
Addington, J	1-F-141	Bains, J	2-B-18, 2-E-129	Black, S	2-B-22		2-B-34, 2-C-93
Afonso, B	1-F-134	Baker, S	1-F-137	Blais-Ouellette, S	1-G-168	Brown, R	1-C-54, 1-C-56
Ahmad, E	2-A-11	Baldy, C	2-E-131	Blouin, J	1-D-108, 1-D-121,	Brunel, J	2-C-61
Ahn, S	1-C-52	Balena, T	2-C-54		2-D-102, 2-D-108,	Brusco, J	1-B-20
Airey, T	2-C-84	Ballanyi, K	1-G-161		2-D-117, 2-D-124	Buchy, L	1-F-141
Allan, K	1-C-54	Bamji, S	1-B-19, 1-B-36,	Bodnar, T	2-A-174	Buck, L	1-B-21, 1-B-30
Allemang-Grand, R	1-C-55		1-F-153, 1-F-154,	Boehnke, S	2-C-55, 1-C-95	Bukhanova, N	1-B-14
Alles, S	1-B-14		2-B-27, 2-B-41,	Bohnet, B	2-C-58	Bullen, A	2-F-133, 1-F-151
Almoujela, A	1-C-66		2-B-49	Bolaños, F	2-G-161, 2-D-124,	Buren, C	1-C-57, 1-B-44
Altier, C	2-B-28	Banjerjee, P	2-C-92		1-C-96	Burma, N	2-F-134
Ammendrup-	2-B-19	Barss, T	1-D-101, 2-C-68,	Bonaguro, R	1-G-167, 2-G-163	Butland, S	1-C-72
Johnsen, I			2-C-70, 2-D-122	Bonin, R	1-G-163, 2-D-123,	Butler, B	2-D-103
An, L	1-F-135	Bartlett, T	1-F-154		2-F-144	Button, E	2-C-57
Andrus, K	2-D-112	Bartoletti, T	1-B-43	Bonnett, C	1-C-60	Cadenhead, K	1-F-141
Anenberg, E	1-C-64	Baxter, M	2-F-143	Booth, S	1-C-58	Cahill, S	2-A-2
Ansari, A	1-G-162, 2-G-167	Bearden, C	1-F-141	Borgland, S	1-B-15, 1-B-36,	Cai, F	1-F-142, 1-B-50,
Anticevic, A	1-F-141	Beaulieu-Laroche, L	2-D-101		1-E-131, 1-F-153,		1-C-88
Appel-Cresswell, S	2-C-73	Beggs, S	1-B-39	D	2-E-132	Cain, S	2-C-58, 1-C-65,
Arbuthnott, G	2-B-24	Begin, S	1-G-166	Borovac, J	2-B-14, 1-B-38		1-F-135, 2-B-40
Ardiel, E	2-F-146	Behrends, J	1-D-102	Borowsky, R	1-D-106, 1-F-139,	Cairns, B	2-D-121
Ardlouze, J	1-A-5	Béïque, J	1-B-35, 1-B-45	D	2-F-139, 2-F-145	Calarco, N	1-F-148
Arenillas, D	2-G-163	Bélanger, E	2-G-160, 1-D-125	Borretta, L	1-G-167	Calderon de Anda, F	2-A-9
Argaw, A	2-A-1	Benedetti, H	2-C-95	Bostrom, C	1-B-49	Calderon, M	2-B-16
Arnold, B	1-C-89	Benediktsson, A	2-C-52, 2-C-94	Boyce, A	2-B-15, 1-C-85	Calon, F	1-C-67
Arya, M	2-E-130	Bennis, M	1-D-119	Boyd, J	1-C-64, 1-C-87,	Calzolari, D	1-C-72
Ashby, D	2-F-138	Berck, M	1-F-134	David I	1-D-115, 2-G-161	Campanucci, V	2-D-120
Asmara, H	1-B-43	Bergeron, E	2-G-164	Boyd, L	2-F-155	Campbell, K	1-C-58, 2-F-155
Asokan, A	1-G-167	Bergin, F	1-B-16, 1-B-38	Boye, S	2-G-163	Campbell, R	1-G-161
Assinck, P	2-C-53	Bergles, D	2-C-53	Brady, R Brandt S	2-C-56	Cannon, T	1-F-141
Atashkari, L	2-B-20	Bernardet, U	1-F-138	Brandt, S	1-D-102	Cantin, L	1-G-164
Augustin, O	1-C-73	Bernier, L	1-B-17	Brebner, K	1-F-140	Cao, L	1-B-34, 1-C-68
Ayata, C	2-C-72	Berry, G	1-G-167	Brennan, A	2-F-151	Capaldo, E	2-A-3
Aylsworth, A	2-C-71	Berson, M	2-B-21	Bridgwater, E	2-D-123	Caprariello, A	2-C-83
Azogu, I	1-E-129	Bestvater, L	1-E-133	Brien, D	2-C-77	Cardona, A	1-F-134
Backen, T	1-F-136	Beveridge, S	2-C-73	Brien, J	1-C-82	Carlen, P	1-C-82
Bagni, C	2-A-9	Bhat, M	1-D-110	Brigidi, S	1-B-19, 2-B-41	Carlsen, A	2-D-111

AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER
Carmona–Wagner, E	1-A-12, 1-C-85	Colicos, M	2-B-48	DeVries, J	1-B-49	Foster, L	2-B-25
Carpenter, M	2-D-117, 2-D-118	Collins, D	1-C-61	Dhaliwal, J	1-C-85	Franciosi, S	2-C-88
Carriot, J	2-D-106	Colmers, P	2-B-18	Dias, C	2-F-138, 1-F-143,	Frankland, P	1-C-74, 1-F-159,
Casanova, C	1-D-120	Connor, S	2-B-19		2-F-148		2-F-157, 2-F-158
Cashman, N	1-C-53, 2-C-65,	Corbett, D	2-C-80	Diatchenko, L	1-C-80	Frew, A	2-D-105
	2-C-82, 2-C-84	Cornblatt, B	1-F-141	Diering, G	1-B-26	Fry, M	1-E-130, 1-E-133
Castillo, C	1-B-27	Corneil, B	2-D-116	Dingwall, R	2-B-27, 2-B-49	Fugariu, V	2-F-149
Cataldi, S	2-C-59	Corrigan, B	2-F-140	Dion, P	1-C-86	Füzesi, T	2-E-129
Catton, J	1-F-145	Côté, D	1-D-125, 1-G-164,	Dione, I	1-G-165	Galstian, T	1-G-164
Cavanagh, M	1-C-65		1-G-166, 2-G-160,	Dissing-Olesen, L	1-B-17, 1-F-154,	Garand, D	2-B-23
Cela, E	2-C-60		2-G-162		2-B-40	Garcia, L	1-B-27
Cerón González, J	1-C-74	Côté, S	1-D-125, 2-G-160	Dong, X	2-D-121	Garcia-Munoz, M	2-B-24
Chabot-Doré, A	1-C-80	Couture, R	1-D-110	Dorton, H	1-D-123	Gasecka, A	1-G-166
Chacron, M	2-D-106	Cowan, C	1-F-153, 2-C-82	Doucet, G	2-F-140, 2-F-156	Gaspar, p	1-D-119
Chaeichi, Y	2-B-21	Craig, A	2-B-25	Douglas, K	1-A-2	Ge, Y	2-B-25
Chamberland, S	2-B-17, 2-E-131	Crawford, D	1-A-1, 1-D-17,	Doyon, N	1-D-111, 1-G-165	Gemae, R	1-A-3
Chamoun, M	1-D-110		2-A-11	Drysdale, M	2-E-132	Gerrow, K	1-C-63, 1-C-83,
Chan, A	2-D-104, 1-D-124,	Crawford, J	1-D-104	D'Suze, G	1-B-27	,	1-C-89
	1-F-152, 1-G-171	Cressman, E	2-D-112	Dudchenko, P	1-F-150	Gershow, M	1-F-134
Chan, A	2-E-128	Cripton, P	2-C-62	Dunbar, J	2-C-66	Ghasemlou, N	1-D-109
Chan, L	1-D-123	Crowder, N	2-D-113	Duncan, G	2-B-21, 2-C-53	Ghate, T	2-C-77
Chapman, C	1-F-158	Cui, G	2-D-114	Dusart, I	1-D-119	Ghosh, A	2-B-26
Chaumont, S	2-C-95	Cullen, H	1-D-105, 2-C-68	Dwyer, Z	1-C-84	Globa, A	1-F-153, 1-B-36
Chauvette, S	1-B-46, 2-B-36	Cullen, K	2-D-106	Dyck, R	1-D-107	Gobert, D	1-B-28
Chen, C	2-G-163	Cullis, P	1-G-162, 2-B-40,	Dykstra, S	1-B-43	Goetz, L	1-G-164
Chen, H	2-C-61		2-G-167	Eadie, B	2-C-98	Goldowitz, D	1-G-167
Chen, L	1-F-160	Cunningham, D	1-C-60	Eaves, A	2-G-166	Gomm Kolisko, R	2-B-27, 2-B-49
Chen, Q	1-F-160	Cunningham, J	1-F-143, 1-F-140	Edwards, A	2-F-141	Goodale, M	2-D-110
Chen, S	1-D-103	da Silva, R	1-A-4	Eftekharpour, E	1-C-66, 1-C-78	Gordon, G	2-B-33
Chen, X	2-B-26	Dabiri, B	2-B-20	Ekstrand, C	1-D-106, 1-F-139,	Gould, L	1-F-139, 1-D-106,
Chen, Y	1-D-104, 2-F-154	Dadar, M	1-C-61	Ekstrand, C	2-F-139, 2-F-145	douid, L	2-F-139, 2-F-145
Cheng, D	2-F-135	Dagher, A	1-C-61, 2-F-137	Ellegood, J	1-C-62, 1-C-55	Grad, L	1-C-53, 2-C-65,
Cheng, W	2-C-62	Dalecki, M	2-D-107	Ellis, J	1-C-99, 1-C-100	Glud, E	2-C-84
Chevrier, J	1-B-22	Dalton, B	1-D-121, 2-D-124	Engbers, J	1-B-43	Graham, J	1-B-49
Chiu, C	2-C-63, 1-C-91,	Damon, D	1-G-164	Englicits, J	2-D-110, 2-F-151	Grandjean, J	2-G-168
ciliu, c	2-C-98	Dargaei, Z	1-B-25	Erb, S	2-F-149	Greba, Q	1-C-65, 1-F-145
Chiu, I	1-D-109	Darvish, S	1-C-54	Espinosa–Becerra, F	1-C-62	Green, D	2-A-2
Chiu, J	1-C-91, 2-C-98	Davarpanah Jazi, S	1-F-144	Evan, A	1-C-61	Grieves, R	1-F-150
Chiu, M	2-A-4	Davidova, A	2-D-101	Evstratova, A	2-B-17	Grills, B	2-C-56
	2-A-4 2-D-105	Davidson, J	1-A-1	Fainsod, A	2-A-10	Groleau, M	1-D-110
Choe, K		Davies, D	1-F-145			Gu, C	2-C-72
Choi, F	2-F-136	De Felice, F	1-C-95, 2-C-55	Fan, C	1-D-107	Gulli, R	2-E-72 2-F-140
Choi, H	2-B-29, 2-B-40	De Koninck, P	1-G-168, 2-G-162,	Fan, J	2-B-22, 2-C-99	Gunton, A	1-C-85
Chou, A	1-B-23, 1-G-167, 2-G-163	De Rominer, r	2-G-164	Fan, S	2-B-20	Haas, K	1-E-20, 1-C-81,
Christie, B	1-B-49, 1-C-91,	De Koninck, Y	1-D-111, 1-D-125,	Fan, Z	1-F-160	1 Idas, IN	2-B-35, 2-C-69,
Christie, d	1-D-105, 1-E-132,	De Rominer, i	1-G-163, 1-G-165,	Farhi, S	1-G-161		2-G-169
	2-C-63, 2-C-66,		2-D-123, 2-F-144,	Farooqi, N	2-A-5	Haghighi, P	2-B-16
	2-C-76, 2-C-98		2-G-160	Farrer, M	1-C-68	Halldorson, T	1-E-133
Chuang, C	1-C-59	de Leeuw, C	1-G-167	Fehlings, M	1-B-33	Hameed, S	1-E-135 1-B-43
Chung, A	2-C-60	Deacon, C	1-A-5	Fernando, S	2-C-65	Hamel, L	1-D-45 1-F-147
Chung, B	1-B-24	Dedeagac, A	1-C-99	Fesharaki, A	1-F-146		
Clark, A	1-D-24 1-A-3, 2-A-6	Deheshi, S	2-B-20	Fice, J	2-D-102, 2-D-108	Han Li, S	2-E-128
Clark, A Clarke, G	1-A-13	Delaney, K	2-C-64	Fjeld, K	2-F-135	Han, H	2-C-58
		Deneault, E	1-C-99	Floresco, S	2-F-153	Hansen, C	1-G-162
Cleworth, T	2-D-117			Flynn, R	2-B-28	Harding, E	1-B-29
Cobret, L	2-C-95	Deng, Y	1-B-50	Fong, B	2-A-6	Hardy, S	1-D-111
Coe, B	1-C-95, 2-C-55,	Desrochers-Couture, M	2-F-144, 1-G-163	Fontaine, C	2-C-66	Harrison, T	1-C-64
	2-C-77		2 C 162 1 D 111	Forbes, P	1-D-108, 2-D-108	Hauswirth, W	2-G-163
Cohen, A	1-G-161	Desrosiers, P	2-G-162, 1-D-111	Forny-Germano, L	2-C-55	Hawrysh, P	1-B-30

POSTER AUTHOR INDEX

Hopien, Hopien, Hopien,Houla, BHoula, BHoula, BHoula, CHoula, BHoula, CHoula, C	AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER
Hopern, Hopern, Hopern, 19, 44, 16, 47, Hopern, 19, 22, 26, 28Jacob, 10, 12, 47, 19, 19, 19, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	Hayat, A	2-C-62	Jones, S	1-G-167	Labrakakis, C	2-D-123	Liu, S	1-B-36, 1-F-153
1-C22-C382-F157_2F158Lacas, B2-C7Lippel-bran, S2-G-46Feach, M1-F34-owle, A1-F13, 2-F40Lagar, D1-C43, 2-C41Ladmar, A2-G-466Feach, M1-8-47Kalgen, C1-C431-C43, 2-C41Ladmar, A2-G-466Felenk M1-8-47Kalgen, C1-C421-C43, 2-C41Ladmar, A2-G-46Felenk M1-8-47Kalgen, C1-C421-C43, 2-C41Ladmar, A2-G-46Felenk M1-8-47Kalgen, C1-C42Ladmar, A2-G-461-D-12Ladmar, A2-G-46Felenk M1-6-187Kang X1-C42Ladmar, A1-C42Ladmar, A2-G-461-D-12Ladmar, A2-G-461-D-12Ladmar, A2-G-461-D-12Ladmar, A1-C42Ladmar, A2-G-461-D-12Ladmar, A1-C42Ladmar, A2-G-461-D-13Ladmar, A1-C42Ladmar, A1-C42Ladmar, A1-C42Ladmar, A2-G-461-D-13Ladmar, A1-C42Ladmar, A1-C42Ladmar, A1-C42Ladmar, A2-G-461-D-14Ladmar, A1-C42Ladmar, A1-C42Ladmar, A2-G-46Ladmar, A1-C42Ladmar, A1-C42		1-B-44, 1-C-67,		1-C-74, 1-F-159,	Labrecque, S	1-G-168, 2-G-162	Liu, X	1-D-128
Haley, S.1-C-84Joselhof, D.1-F19, 2-F490Japac, D.1-C-82, 2-C-61Upd-Barney, D.2-C-70Heah, M.1-F144Joselhof, D.2-S-72, 2-K41Lang, M.2-C-470Landman, M.2-F184Heahrad, I.1-B-172Kadgen, C.1-C-69Lang, M.2-C-470Larman, K.2-F184Heahrad, N.1-B-172Kadgen, C.1-C-69Lang, M.2-C-470Larman, K.2-F184Heahrad, N.1-B-172Kang, K.2-F2-52Lapis, G.1-C-69, Z-101Larman, K.2-F435, L-61Heahrad, K.1-D-173, AnKang, K.2-F2-52Lapis, G.1-C-69, Z-101Larman, K.2-F435, L-61Heahrad, K.1-D-173, AnKang, K.1-C-62Lapis, G.1-C-61, Z-101Larman, K.2-F435, L-61Larman, K.1-F332, L-61Larman, K.1-F332, L-61Larman, K.1-F332, L-61Larman, K.1-F332, L-61Larman, K.1-F332, L-61Larman, K.1-F332, L-63Larman, K.2-F33Hine, P.1-C-64Karrad, K.1-F170Lawer, G.1-F412, L-161, L-167Larman, K.2-F314Hine, R.1-C-64Karrad, K.2-F132Larman, K.2-F142Larman, K.2-F34Hine, R.1-C-64Karrad, K.2-F132Larman, K.2-F142Larman, K.2-F34Hine, R.1-C-64Karrad, K.2-F132Larman, K.2-F142Larman, K.2-F34Hine, R.1-C-64Karrad, K.2-F114Larman, K.	, ,		, ,					
ieah, Mi-F-14Jorella, Ci-F-24, 2-F-24Lan, Ni-G-3-14Lomma, Ni-G-3-14i-Hernha, K1-8-H3Malen, J1-5-109Ian, N2-A-4Ioman, A2-F-34i-Hernha, K1-9-112Kala, R1-6-20Ian, N2-A-4Ioman, M2-F-34i-Hernha, K1-9-112Kala, R2-F-35Iang, S1-6-17Iomer, M2-F-32i-Hernha, K1-F-143Kala, K1-A-4, I-A-4Lack, K1-G-127Iomer, M2-F-32i-Hernha, K1-F-143Kala, K1-A-4, I-A-4Lack, K1-G-127Iomer, M2-F-32i-Hernha, K1-F-130Kala, K2-F-13Iomer, K2-F-13Iomer, K2-F-13i-Hernha, K1-F-140Kala, K2-F-14Iomer, K2-F-14Iomer, K2-F-14Hillon, R1-G-66Kala, K2-F-110Ican, K2-F-14Iomer, K1-F-20Hillon, R1-G-86Kala, K2-F-110Ican, K2-F-12Iomer, K2-F-14Hillon, R1-G-86Kala, K2-F-110Ican, K1-F-12, I-F-13Iomer, K1-F-20Hillon, R1-G-86Kala, K2-F-110Ican, K1-F-14, I-F-13Iom, K1-F-20Hillon, R1-G-86Kala, K2-F-110Ican, K1-F-14, I-F-13Iom, K1-F-20Hillon, R1-G-36Kala, K2-F-120Ican, K1-F-20Iom, K1-F-20Hillon, R1-F-140Kala, K2-F-1	Hayley, S		Jovellar, B				, , ,	
hend, h18-43Joller, J10-109Ja, N2.4.4John N2.8.4Helensh, L1-0-112Kalgan, C1-6-63Lang, A2-6-77Loranovaka, A2.8-14Henns, L1-0-112Kalng, R2-8-47Lang, A2-6-77Loranovaka, C2.8-24Henns, L1-0-113Kalng, R2-8-25Larga, S1-1-697Lorente, L2-1-22, 2-1Henns, R1-0-113Kalng, R1-4-3, 2-1-1Large, K1-(6-1), 2-1-17Lorente, L2-1-23, 2-1Henns, R2-8-13, 1-167Karr, LP2-8-10Large, K2-6-64Lorente, L2-0-125Hills, R2-8-13Karr, LP2-9-110Large, K2-6-64Large, S2-6-64Large, S2-6-67Large, SLarge, S2-6-67Large, S2-6-66Ha-17, 1-1-15, 1-1-15Large, S2-6-67Large, SLarge, S2-6-66Ha-17, 1-1-15, 1-1-12, 1-1-15, 1-1-12, 1-1-15, 1-1-12, 1-1-15, 1-1-12, 1-1-15, 1-1-12, 1-1-12, 1-1-15, 1-1-12, 1-1-15, 1-1-12, 1-1-12, 1-1-15, 1-1-12, 1-1-15, 1-1-12, 1-1-12, 1-1-12, 1-1-15, 1-1, 1-1-14, 1-1-15, 1-1, 1-1-14, 1-1-15, 1-1, 1-1-14, 1-1-15, 1-1, 1-1-14, 1-1-		1-F-144	Jovellar, D	2-B-27, 2-B-41	J .		,	2-C-70
Hendenk11[Heath, N			1-D-109				
Hermang, L. Lo-112 Kang, R. 2-8-72 Lang, D. L-G-67 Useber, S. L-G-167 Useber, S. L-G-173 Land, S. L-H-183 L-H-183 L-H-183 L-H-183 L-H-173 L-H-173 <thl-174< th=""> <</thl-174<>								
Interforman, K.24-19Jang't, Y.24-37Jang'te, S.1-6-107Jape-Jener, Y.24-34Herdman, K.1-F-148Kana, A.1-A-4, 1-A-8Larke, K.1-6-107Larke, K.1-6-107Larke, K.1-6-107Larke, M.1-7-12Larke, K.1-6-107Larke, K.1-6-107Larke, K.1-6-107Larke, K.1-6-107Larke, K.1-6-107Larke, K.1-6-107Larke, K.2-10-108Larke, K.2-10-118Larke, K.2-10-118 </td <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1-D-127, 2-D-103</td>	,							1-D-127, 2-D-103
Hedman, K 1–F148 Kapk, K 1–F4.32, F4-12 Larakie Adam, M 1–C42 Larakie Adam, M 1–C42 Larakie Adam, M 1–C42 Larakie Adam, M 1–C42 Larakie Adam, M 1–C43 Larakie Adam, M 2–C4-163 Larakie Adam, M 2–C4-164 Larakie Adam, M 2–C4-164 Larakie Adam, M 2–C4-164 Larakie Adam, M 2–C4-174 Larakie Adam, M 2–D-174 Larakie Adam, M 2–D-174 Larakie Adam, M 1–C4-27 Larakie Adam, M 1–C4-27 Larakie Adam,					J.		,	
Hermonills 1–1-13 Kapus B 1–6-32 Hardle-Atam, M 1–C-72 1–1-19, 2–F Hickmont, J 2-G-163, 1–6-167 Kapus B 1–6-82 Lazaro, M 2-6-164 Loren, L 2-D-173 Hill, M 2-B-10 Kamin Tar, P 2-B-19 Lazaro, M 2-6-163 Loren, L 2-D-173 Hill, M 2-B-12 Katrodi, R 1-D-115 Lazaro, M 2-6-163 Louis, S 2-4-164 Hinton, B 1-C-64 Katrodi, R 1-D-112 Lavaro, M 2-6-174 Louis, S 2-6-163 Hinton, M 1-B-174 Kauro, M 2-F-162 Louis, S 2-6-163 Hinton, M 1-B-174 Kenork, M 2-F-167 Leubu, J 1-B-174, 1-B-125, 1-B			-					
Hidmont, J 2-4-H3, 12-6167 Kanm Har, P 2-4-91 Lazons, M 2-6-194 Lone							LUICHIZ, L	
Hicks2-A-10Karatela, R1-8-19Jazus, M2-8-24Indma B1-1-40Hill, M2-B-13, 2-C-6107Karatela, R1-0-115Lever, L-1-6-162, 2-6-107Iouks, C1-8-31Hinc, P1-C-64Karatela, R1-0-115Lever, L-1-6-162, 2-6-107Iouks, C1-8-31Hinc, P1-6-80Kaz, N2-0-100Lever, L1-9-124, 1-F-152Louk, S2-6-163Hinc, A1-6-130Kay, C1-6-72Lever, L1-9-124, 1-F-152Louk, S2-8-31Holm, A1-6-140Kay, C2-0-110Lever, C1-8-31Lever, L2-9-104, 2-6-161Loup, R2-8-31Holm, A1-6-167Kener, S2-0-112Lever, C1-8-35Lever, L2-9-115Lever, L2-9-116Lever, L2-9-116Lever, L2-9-116Lever, L2-9-116Lever, L2-9-116Lever, L2-9-116Lever, L2-9-116Lever, L2-9-116Lever, L2-9-126Lever, L2-9-126Lever, L2-9-126Lever, L2-9-126Lever, L2-9-126Lever, L2-9-126Lever, L2-9-126 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Hill, M. 2-Bit 3, 2-C41 Kapreka, R. 1-6-167 Leaver, B. 1-C462, 2-C487 Loards, C. 1-B-37 Hilton, B. 1-C-66 Katz M. 2-D-110 Leavit, M. 2-F142 Loards, C. 1-B-37 Hilton, A. 1-F-48 Katz, M. 2-F-12 Leavit, M. 2-F142 Loards, C. 1-B-37 Hogg, D. 1-B-748 Kaug, M. 2-F192 Leo, I. 1-B-17, 1-155, Luo, X. 2-B-30 Holm, A. 1-C-65 Kennedy, S. 1-B-77 Leo, M. 1-B-17, 1-152, Luo, X. 2-B-30 Holm, A. 1-C-65 Kennedy, S. 1-B-47 Leo, M. 1-B-33 Luo, X. 2-B-31 Honn, A. 1-F143 Kennedy, S. 1-B-43 Lee, K. 2-D-115 Makasa, S. 1-F141 Honn, A. 1-F143 Khaden, M. 1-B-38 Lee, K. 2-D-115 Makasa, S. 1-C-71 Honn, A. 1-F144 Khaden, M. 1-B-38 Lee, K. 2-D-115 Makasas, S. 1-C-71 <					,		,	
Hinor, P1-C46Kar, M2-D-115Leavit, M2-C-87Loux, S2-G-66Hince, P1-C-36Kar, M2-D-110Leavit, M2-F-17Lour, LL-C-70Hinsh, M1-F-143Kau, M2-F-132L-D-124, 1-F-152, 2-D-144, 2-G-161Loux, X2-8-30Homes, A1-G-67Kaly, K2-D-119Lee, C1-F-131Lou, X2-8-30Hones, A1-G-167Karnes, S1-B-42Lee, C1-B-35L-g-1042-8-31Hone, M1-G-167Karnes, S1-B-42Lee, C1-B-35L-g-1042-8-31Homen, T2-G-165Karnes, S2-F-173Lee, K2-D-115Machao, A1-C-50Homen, T2-F-173Keong, M2-C-83Lee, K2-D-116Machao, A2-C-32Homen, T1-F-143Kana, M1-B-32Lee, K2-D-116Machao, A2-C-32Homen, T1-F-143Kana, M1-B-32Lee, K2-D-116Machao, A2-C-32Homen, T1-F-143Kana, M1-B-32Lee, K2-D-116Machao, A2-C-32Homen, T1-F-143Kana, M1-B-33Leh, M2-D-116Machao, A2-C-32Horder, BKana, M1-B-33Leh, M1-B-32H-32H-32H-32Horder, BI-G-11Kana, M1-B-33Leh, M1-B-32H-32H-32Horder, BI-G-11Kana, M2-C-32Kana, M2-C-32Machao, C2-H-32<								
lince, P1-C-86Katz, N2-0-10Leavit, M2-f-12Jouth, E1-7.0linta, R2-B-21Kaug, M2-C-66, 2-C-70Lebue, J1-B-71, 1-D-115, Lovinger, D2-D-114Horps, A1-C-89Kaug, M2-F-132Lebue, J1-B-71, 1-D-115, Lovinger, D2-B-14Horns, A1-C-89Kelly, K2-D-119Lec, D1-B-2.1Luyler, T1-B-38, 1-B-30Horns, P2-G-165Kernedy, S1-B-49Lec, D1-B-2.1Lyr, P2-B-31Horns, P2-G-165Kernedy, S1-B-49Lec, R1-B-35Lyr, P2-B-31Horn, T2-F-173Keogh, M2-G-31Lee, K2-D-115Machalo, A1-C-52Horns, T2-F-173Keogh, M2-G-33Lee, K2-D-115Machalo, A1-C-52Horns, A1-F-146Khach, M1-B-33Lee, K2-D-115Machalo, A1-C-52Horns, A1-F-145Khanafer, S2-D-112Lee, M2-G-166Mackar, M2-B-22, 2-B-15Horns, A1-F-145Khaze, M1-B-33Lenymer, G1-G-167Madator, M2-B-22, 2-B-15Horns, A1-F-145Kina, M1-B-33Lenymer, G1-G-167Madator, M2-B-22, 2-B-15Horns, A1-C-60King, B1-B-33Lenymer, G1-G-167Madator, M2-B-22, 2-B-16Horns, A1-C-60King, B2-F-135Lenymer, G1-G-167Madator, M1-B-22, 1-B-16Horns, B <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Hinta, Hinta, 169, Job2-9-14Kaup, G (A)2-6-8, 2-7-00Labue, J (J-124, 1-F12) (J-124, 1-F12) (J-124, 1-F13)Inding, G (J-124, 1-F13)2-9-13Hölns, A Hölns, A1-6-30Kay, C (M), X2-0-119Lec, C1-5-131Luo, X2-8-30Hölns, A Hölns, A1-6-67Kennety, S1-8-49Lec, C1-5-131Luo, X2-8-30Hölns, A Hönn, I Hönn, I 2-6-165Kennety, M2-5-137Lec, K1-8-35Luoyberg, K1-14-10Hönn, I Hönn, I Hönn, I Hönn, I2-6-165Kennety, M2-5-137Lec, K2-0-155Madado, A1-6-60Hönn, I Hönn, I Hönnet, S2-6-171Madado, A2-6-73Hönn, I Hönn, I Hönn, I Hönnet, S1-6-167Madado, A2-73, 2-471Madado, A2-73, 2-471Hönn, I Hönn, I Hönnet, S1-6-167Mada, C2-73, 2-471Madado, A2-73, 2-471Hönn, I Hönnet, S2-0-116Len, I Hönnet, S2-0-116Mada, C2-73, 2-471Hönnet, S2-9-116Len, I Hönnet, S1-6-167Mada, C2-73, 2-471Hönnet, S2-532Len, I Hönnet, S1-6-167Mada, C2-73, 2-471Hönnet, S1-6-17Hönnet, S2-0-116Mada, C2-73, 2-471Hönnet, S1-6-17Hönnet, S2-0-116Mada, C2-73, 2-471Hönnet, S1-6-17Hönnet								
Hincham, 1-F-148 Kau, M 2-F-132 1-D-12, 1-F-152, 2-D-104, 2-G-161 Lu, X 2-B-30, 2-B-14 Hong, A 1-G-89 Kaly, K 2-D-119 Lee, C 1-B-131 Lu, Y 2-B-30, 2-B-144 Holn, K 1-G-167 Kennedy, S 1-B-49 Lee, D 1-A-2 Ly, P 2-B-31 Hoon, Lim, P 2-G-165 Kennedy, S 1-B-49 Lee, C 2-D-105 Markada, A 1-C-52 Horm, A 1-F-149 Khado, M 1-A-3 Lee, K 2-D-115 Markada, A 1-C-52 Horm, A 1-F-149 Khado, M 1-B-32 Lee, K 2-D-115 Markada, A 1-C-52 Horm, A 1-F-140 Khado, M 1-B-32 Lee, K 2-D-117 Markada, S 1-E-77 Horm, A 1-F-145 Khado, M 1-B-33 Lemman, S 2-D-116 Markada, S 2-E-73, 2-C-4 Horm, A 1-E-65, 1-F-135 Khadar, C 2-E-130 Lemman, S 2-D-116 Markada, C 2-E-73, 2-C-4 Horm								
Hog, DI=B-21, I=B-30Kay, CI=C-72Z-D-104, Z-G-161Lupben, TI=B-38, I=G-2B-14Holm K, AI=C-167Kenney, KSI=D-109Lee, CI=E-131Lyp, PZ=B-31Hoon Lim, PZ-G-165Kenney, LSZ-D-1110Lee, KZ-D-105Machad, AI=C-167Horman, TZ-G-73Kenney, LSZ-F-157Lee, KZ-D-105Machad, AI=C-30Horman, TZ-F-173Kenney, LSZ-F-173Lee, KZ-D-115Machad, AI=C-60Horman, TZ-F-173Kenney, LSZ-G-38Lee, KZ-D-115Machad, AI=C-60Horman, TZ-F-173Kenney, LSZ-G-38Lee, KZ-D-115Machad, AI=C-60Horman, TI=F-144Khan, MI=B-32Lee, KZ-G-171Machad, AI=C-60Horman, TI=F-144Khan, MI=B-33Lee, KZ-G-161Machad, AI=C-67Horman, TI=F-145Khanafer, SZ-D-112Lee, NZ-G-166Machad, AZ-C-73, Z-CHorman, TI=D-116Kina, MI=B-33Lehman, SZ-D-116Machad, AZ-C-73, Z-CHorpa-Courger, FI=D-110Kina, MI=C-82, Z=B-15Lem, LI=G-167Mader, MZ-C-73, Z-CHorpa-Courger, FI=D-110Kina, MZ-G-131Lem, LI=G-167Mader, MZ-C-73Horpa-Courger, FI=D-110Kina, MZ-G-131Lem, LI=G-167Mader, MZ-C-73Horpa-Courger, F					LeDue, J			
Hoit, R. 1-6-167 Kennetic, M. 1-8-49 Lee, D. 1-A-2 Jy, P. 2-8-31 Hoon Im, P. 2-6-165 Kennetic, M. 2-0-111 Lee, K. 1-8-35 Lyngbreg, K. 1-1-141 Hoors, T. 2-6-79 Kennetic, M. 2-6-83 Lee, K. 2-0-115 Machado, A. 1-C-60 Horn, A. 1-F-149 Khacho, M. 1-A-32 Lee, K. 2-0-115 Machado, A. 1-C-60 Horne, R. 1-F-140 Khacho, M. 1-B-32 Lee, M. 2-C-53 Mackay, A. 2-C-73, C-40 Horne, R. 1-F-145 Khazal, R. 2-E-130 Lee, M. 2-C-53 Mackay, A. 2-C-73, L-20 2-P-112 Lee, M. 2-D-116 Mackay, A. 2-C-73, L-20 2-P-114 Lengay, T. 1-G-167 Madan, C. 2-F-13, L-F-33 Machay, C. 2-F-13, L-F-33 Machay, C. 2-F-13, L-F-33 Machay, C. 2-F-13, L-F-33 Machay, C. 2-F-23 Malabey, M. 2-P-22 2-P-22 2-P-22 2-P-22 2-P-23 Malabey, M. <					1 6	,	Luyben, I	
Hoon Lim, P 2-6-165 Kennef, K, M 2-0-111 Lee, K 1-8-35 Lyngberg, K 1-1-14 Hoos, I 2-7-79 Kenney, J 2-7-157 Lee, K 2-0-105 Ma.Rad, A 1-C-52 Horman, T 2-1-173 Kough, M 2-6-83 Lee, K 2-6-171 Machad, A 1-C-52 Hormar, K 1-F-149 Khaden, M 1-A-3 Lee, K 2-6-171 Machad, A 2-7-73, 2-C4 Howand, J 1-F-144 Khan, M 1-B-32 Lee, K 2-6-166 Machad, A 2-7-73, 2-C4 Howand, J 1-F-155, Khander, S Len, M 2-6-166 Machad, A 2-8-29, 2-83 2-8-40, 2-C7 Hung, J 1-D-114, 1-F-131 Kin, D 2-C-69 Lennyer, G 1-C-67 Madan, C 2-8-12 Hung, J 1-D-114, 1-F-131 Kin, M 1-C-68 I-C-67 Madag, C 2-8-12 Hung, J 1-D-109 King, B 1-8-43 I-C-67 Madag, C 2-8-12 Hung-Gourueg, J 1-D-109 Kin			,					
Hoos, T 2-C-79 Kenney, J 2-F-157 Lee, K 2-D-105 Ma, B 1-C-52 Horma, N 1-F-149 Kkooup, M 2-C-83 Lee, K 2-D-105 Macbaac, A 1-C-60 Horm, A 1-F-149 Kkade, M 1-A-30 Lee, K 2-G-171 Macbaac, S 1-C-71 Horne, R 1-B-40 Khademullah, S 1-B-32 Lee, M 2-C-33 MacKay, A 2-C-73, 2-C-4 Howand, J 1-C-65, 1-F-135, Khanafe, S 2-D-112 Lee, M 2-C-66 2-B-20, 2-B3 MacKay, A 2-C-73 MacKay, A 2-C-73 2-B-40, 2-B3 Macha, C 2-E-13, 1-E-131 Hupa, 1-L-15, 1-B, 1-B, 1-B4,			<i>/</i> ·					
Horman, T 2-F-173 Keough, M 2-C-83 lee, K 2-0-115 Machado, A 1-C-71 Horn, A 1-F-149 Khachn, M 1-A-3 Lee, K 2-G-71 Mackaa, C 1-C-71, 2-C-73, 2							/ 5 5.	
Horn, A 1-F-149 Khademullah, S 1-A-3 Lee, K 2-G-71 Macksa, S 1-C-71 Horne, R 1-B-40 Khademullah, S 1-B-32 Lee, M 2-C-33 MacKay, A 2-C-73, 2-C-73 Howand, J 1-F-145 Khan, M 1-B-33 Lee, V 2-G-166 2-B-32, 2-B3 2-B-40, 2-C-73 2-B-40, 2-C-74 2-B-42, 2-B-2, 2-B-2, 2-B-2, 2-B-2, 2-B-2, 2-B-2, 2-B-2, 2-B-16 2-B-74, 2-B			<i>.</i>					
	Horman, T							
Hosang, S. 1-F.144 Khan, M. 1-B-38 Lee, S. 1-F-130, 1-F-133, 2-G-166 MacKar, B. 1-B-17, 1-F- 2-B-29, 2-B3 Howland, J. 1-F-145 Khanafe, S. 2-D-112 Lee, V. 2-G-166 2-B-29, 2-B3 2-B-40, 2-C- Hryciw, B. 2-C-98 Khazal, R. 2-E-130 Lengyell, T. 1-G-167 Madan, C. 2-F-154, 1-F- Huag, J. 1-D-114, 1-E-131 Kim, D. 2-C-69 Leprivier, G. 1-C-67 Madan, C. 2-F-134, 1-F- Hupp-Gourgues, F. 1-D-110 King, J. 2-D-113 Lerit, J. 1-C-67 Madavan, V. 1-B-22, 1-B-23 Hussain, N. 1-B-31 Kinkead, R. 2-E-131, 2-E-131 Leroy, M. 1-B-37, 2-G-171 Mak, C. 2-G-166 Hvang, S. 1-D-109 Kiarsen, T. 2-C-70, 1D-101, Leung, A. 2-C-68 Maik, A. 2-B-32 Hyland, L. 2-F-141 2-G-122 Leung, A. 2-C-68 Malk, A. 2-B-32, 2-B-17 Hyland, L. 2-F-141, 1-F-134 Levy, R. 1-F-151, 2-B-38, <t< td=""><td>Horn, A</td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td></t<>	Horn, A		,					
Howland, J.1-C-65, 1-F-135, 1-F-145Khanafer, S.2-D-112 (Khazei, M.Lee, V2-G-1662-B-29, 2-B3 2-B-40, 2-C4Hyrciw, B.2-C-98Kinazel, R.2-E-130Lemyell, T.1-G-167Madan, C2-F-154, 1-F- Magoski, NHuang, J.1-D-114, 1-E-131Kim, D.2-C-69Leprylie, G1-C-67Madar, C2-F-154, 1-F- Magoski, NHung, A.1-C-69King, B1-B-43Lerd, F.2-F-173Malty, S1-B-22, 1-B- 2-B-23Hupp, Gourgues, F.1-D-110King, B2-D-113Lerd, R2-F-173Malty, S1-B-42Hussain, N.1-B-31Leroux, M1-B-37, 2-G-171Malty, S2-A-174Hydnd, L2-F-141Lerd, R2-C-70, 1-D-101, 2-C-68, 2-D-122Leung, A2-C-85Malk, D2-A-174Hyland, L2-F-141Z-C-70, 1-D-101, 2-C-84Leung, A2-C-56Malk, D2-A-174Hyland, L2-F-141Z-C-70, 1-D-101, 2-C-73Leung, A2-C-64Malk, D2-A-78Iffinca, M2-B-28Kinen, M2-F-141, 1-F-134Lewy, R1-F-151, 2-B-38, 2-F-133Marcari, B2-C-75Kinza, P.2-D-117Kasen, T2-C-90Li, C1-B-37Marcari, B2-C-75Jost, P.Kinze, M.2-F-141, 1-F-134Lewy, R1-F-151, 2-B-38, 2-F-133Marcari, B2-C-75Kinza, M.2-B-84Ko, R2-B-29Li, D2-C-73Marcari, B2-C-75Jost, P.Kinze, M.<	Horner, R	1-B-40	Khademullah, S	1-B-32		2-C-53	МасКау, А	2-C-73, 2-C-87
I.F-145 Khazaei, M. 1-B-33 Lehmann, S. 2-0-116 2-B-40, 2-C-3 Hryckw, B. 2-C-98 Khazali, R. 2-E-130 Lengyell, T. 1-G-167 Madan, C. 2-F-154, 1-F. Huang, J. 1-D-114, 1-E-131 Kim, M. 2-C-69 Leprivier, G. 1-C-67 Madavan, V. 2-B-42 Hugari, R. 1-B-20, 1-B-31 Kim, M. 1-C-85, 2-B-15 Lerch, J. 1-A-10, 1-C-57 Madavan, V. 1-B-22, 1-B-23 Huppé-Courgues, F. 1-D-10 King, B. 1-B-43 Lerch, J. 1-A-10, 1-C-57 Malty, S. 1-B-42 Hussain, N. 1-B-31 Kincead, R. 2-E-113 Leroux, M. 1-B-37, 2-G-171 Mak, C. 2-G-166 Hwang, S. 1-D-10 King, B. 2-E-131, 2-E-131 Leroux, M. 1-B-37 Mak, D. 2-A-174 Hyada, L. 2-F-141 2-C-68, 2-D-122 Leug, J. 2-C-64 Malk, D. 2-C-75 Ighatus Ankia 2-E-52 Kien, M. 2-F-131, 1-E-134 Marcari, O. 2-E-73 Ighatus Ani	Hosang, S	1-F-144	Khan, M	1-B-38	Lee, S	1-E-130, 1-E-133	MacVicar, B	1-B-17, 1-F-154,
Hyciw, B 2-C-98 Khazuk, M 1-D-35 Lemand, T 1-G-167 Madar, C 2-F-130 Lemand, T 1-G-167 Madar, C 2-F-131 Kim, D 2-C-69 Leprivier, G 1-G-167 Magoski, N 2-B-42 Huganir, R 1-B-26, 1-B-31 Kim, M 1-C-85, 2-B-15 Lerch, J 1-A-10, 1-C-55, 1-A-17 Mahadevan, V 1-B-22, 1-B-21 Huppé-Courgues, F 1-0-110 King, J 2-D-113 Leri, F 2-F-173 Mahadevan, V 1-B-22, 1-B-21 Hussain, N 1-B-31 Kinked, R 2-F-131, 2-E-131 Leroux, M 1-B-37, 2-G-171 Mak, C 2-G-166 Hwang, S 1-D-109 Klame, T 2-C-70, 1-D-101, Leung, A 2-C-85 Mak, D 2-A-174 Hyland, L 2-F-141 2-G-20 Keelle, P 1-A-5 Malake, A 2-B-32, 2-B-3 Ignatus Arokia 2-C-67 Kauer, B 2-B-50 Lin, G 1-F-151, 2-B-38, Mancarci, B 2-C-75 Ignatus Arokia 2-D-117, 2-D-118, Kordi, A 1-B-41, 2-C-79 Li, H 1-A-1, 2-A-11 M	Howland, J	1-C-65, 1-F-135,	Khanafer, S	2-D-112	Lee, V	2-G-166		2-B-29, 2-B32,
Instruction		1-F-145	Khazaei, M	1-B-33	Lehmann, S	2-D-116		
Hung, J. 1-14 your (R) 1-0-05 year Hung, J. 1-4-10 year Hung, J. 1-6-62 Maindevan, Y. 1-8-22 year 1-8-22 year Hwang, S 1-0-109 Klarer, T. 2-(-70, 1-0-10) year Leong, A. 2-C-85 Mak, D. 2-A-174 Hyand, L 2-141 2-1020 Klasen, T. 2-C-90 Levellé, P. 1-A-5 Mailik, A. 2-8-32 year Mancard, B. 2-C-78 Ignatius Arokia 2-6-67 Knauer, B. 2-F-111 year Konsa, B. 2-C-75 Mancard, C. 2-7-75 Ikuta, N 2-8-48 Ko, R. 2-B-29 Li, D.	Hryciw, B	2-C-98	Khazall, R	2-E-130	Lengyell, T	1-G-167		2-F-154, 1-F-158
	Huang, J	1-D-114, 1-E-131	Kim, D	2-C-69	Leprivier, G	1-C-67	-	
Hung, A 1-C-69 King, B 1-B-43 1-C-62 2-B-33 Huppé-Gourgues, F 1-D-110 King, J 2-D-113 Leri, F 2-F-173 Maity, S 1-B-42 Husssin, N 1-B-31 Kinkead, R 2-F-131, 2-E-131 Leroux, M 1-B-37, 2-G-171 Mak, C 2-G-166 Hwang, S 1-D-109 Kinsead, R 2-C-70, 1-D-101, Leung, J 2-C-88 Male, J 2-A-174 Howski, J 2-D-120 Kiasen, T 2-C-90 Léveillé, P 1-A-5 Malik, A 2-B-32, 2-B-4 Iftinca, M 2-B-28 Klein, M 2-F-141, 1-F-134 Levy, R 1-F-151, 2-B-38, 2-F-14 Maik, A 2-B-32, 2-B-4 Ignatius Arokia 2-C-67 Knaer, B 2-B-50 Li, D 2-C-73 Mancarci, B 2-C-75 Ikuta, N 2-B-48 Kong, D 1-C-60 Li, D 2-C-73 Marcarci, B 2-C-75 Ikuta, N 2-B-48 Kong, A 1-C-617 Li, D 1-A-12, 2-A-111 Mang, C 2-F-155 Ingries, J	Huganir, R	1-B-26, 1-B-31	Kim, M	1-C-85, 2-B-15	Lerch, J	1-A-10, 1-C-55,	Mahadevan, V	1-B-22, 1-B-32,
Huppé-Gourgues, F 1-D-110 King, J 2-D-113 Leri, F 2-F-173 Maity, S 1-B-42 Hussain, N 1-B-31 Kinkead, R 2-E-131, 2-E-131 Leroux, M 1-B-37, 2-G-171 Mak, C 2-G-166 Hwang, S 1-D-109 Klarner, T 2-C-70, 1-D-101, 2-G-18 Leroux, M 1-B-37, 2-G-171 Mak, C 2-G-166 Ianowski, J 2-D-100 Klasen, T 2-C-70, 1-D-101, 2-G-08 Lerug, J 2-C-88 Male, J 2-C-75 Ifinca, M 2-B-28 Klein, M 2-F-141, 1-F-134 Levy, R 1-F-151, 2-B-38, 2-F-75 Mancarci, B 2-C-75 Ignatius Arokia 2-C-67 Knauer, B 2-B-50 Li, D 2-C-73 Mancarci, O 1-B-48, 1-C-6 Ikuta, N 2-B-848 Kon, R 2-B-29 Li, D 2-C-73 Mancarci, O 1-B-48, 1-C-6 Inglis, J 2-D-117, 2-D-118, 2-D-118 Korecki, A 1-G-167, 2-G-163 Li, Y 1-G-168, 2-G-163 Mann, E 2-G-168 Iqbal, M 1-C-65 Kouse, M 1-C-62 <t< td=""><td>Hung, A</td><td>1-C-69</td><td></td><td>1-B-43</td><td></td><td>1-C-62</td><td></td><td></td></t<>	Hung, A	1-C-69		1-B-43		1-C-62		
Hussain, N 1-B-31 Kinkead, R 2-E-131, 2-E-131 Leroux, M 1-B-37, 2-G-171 Mak, C 2-G-66 Hwang, S 1-D-109 Klarner, T 2-C-70, 1-D-101, 2-C-85 Leung, J 2-C-485 Maley, J 2-A-174 Hyland, L 2-F-141 2-G-68, 2-D-122 Leung, J 2-C-485 Maley, J 2-B-278 Ianowski, J 2-D-120 Klassen, T 2-C-69 Leung, J 2-C-485 Maley, J 2-B-32, 2-B-2 Ignatius Arokia 2-G-67 Knauer, B 2-B-50 Marcarci, B 2-B-32 Marcarci, B 2-F-33 Ignatius Arokia 2-G-67 Knauer, B 2-B-28 Ko, R 2-B-29 Li, D 2-G-73 Marcarci, B 2-G-75 Ikuta, N 2-B-48 Ko, R 2-B-29 Li, D 2-G-73 Marcarci, B 2-G-75 Ikuta, N 2-B-48 Korad, P 1-B-167, 2-G-163 Li, T 1-B-50, 1-F-160 Mang, C 2-F-155 Inglis, J 2-D-117, 2-D-121 Kosak, B 2-C-73 Lin, C 1-E-162,	Huppé-Gourgues, F	1-D-110			Leri, F	2-F-173	Maity, S	
Hwang, S1-D-109Klarner, T2-C-70, 1-D-101, 2-C-68, 2-D-122Leung, A2-C-85Mak, D2-A-174Hyland, L2-F-1412-F-1412-C-68, 2-D-122Leung, J2-C-64Maley, J2-C-78Ianowski, J2-D-120Kassen, T2-C-90Léveillé, P1-A-5Maley, J2-B-32, 2-B-32, 2-B-34, 2-C-73, 2-F-133, 2-F-133, 2-F-133, 2-F-133, 2-F-133, 2-F-133, 2-F-133, 2-C-75, 2-C-75, 2-F-133, 2-F-33, 2-C-75, 2-C-75, 2-F-133, 2-F-33, 2-C-75, 2-C-75, 2-F-133, 2-D-117, 2-D-118, 2-C-79, 2-B-14, 2-C-79, 2-F-143, 2-C-79, 2-D-117, 2-D-118, 2-D-117, 2-D-118, 2-C-73, 2-D-127, 2-D-124, 1-D-121, 2-D-124, 2-D-121, 2-D-124, 2-D-127, 2-D-136, 2-D-127, 2-D-137, 2-D-138, 2-D-127, 2-D-137, 2-D-138, 2-D-127, 2-D-138,		1-B-31			Leroux, M	1-B-37, 2-G-171		2-G-166
Hyland, L 2-F-141 2-C-68, 2-D-122 Leung, J 2-C-64 Maley, J 2-C-78 Ianowski, J 2-D-120 Klassen, T 2-C-90 Léveillé, P 1-A-5 Malik, A 2-B-32, 2-B-3 Iftinca, M 2-B-28 Klein, M 2-F-141, 1-F-134 Levy, R 1-F-151, 2-B-38, 2-F-133 Mancarci, B 2-C-75 Ignatius Arokia 2-C-67 Knauer, B 2-B-29 Li, C 1-B-37 Mancarci, C 1-B-48, 1-C-6 Ikuta, N 2-B-48 Ko, R 2-B-29 Li, D 2-C-73 Manford, E 2-C-75 Ikuta, N 2-B-48 Ko, R 2-B-29 Li, D 1-C-60 Mang, C 2-F-153 Ilarderet, I 1-F-134 Komal, P 1-B-41, 2-C-79 Li, T 1-B-80, 1-F-160 Mang, C 2-F-155 Ilarderet, I 2-D-117, 2-D-118, 2-D-118, 2-D-118, 2-D-118, 2-D-118, 2-D-118 Korecki, A 1-G-167, 2-G-6163 Li, Y 1-G-162, 2-G-163 Mann, E 2-G-168 Igbal, M 1-C-66 Kouser, M 1-C-62 Lim, D 1-F-152, Marce, S 1-G-168 Igbal, M 1-G-164 Kouser, M	Hwang, S	1-D-109			Leung, A	2-C-85	Mak, D	2-A-174
Janowski, J 2-D-120 Klassen, T 2-C-90 Léveillé, P 1-A-5 Malik, A 2-B-32, 2-B-4 Iftinca, M 2-B-28 Klein, M 2-F-141, 1-F-134 Levy, R 1-F-151, 2-B-38, 2-F-4 Mancarci, B 2-C-75 Ignatius Arokia 2-C-67 Knauer, B 2-B-50 Li, C 1-B-37 Mancarci, D 1-B-48, 1-C-4 Judderet, I 1-F-134 Komal, P 1-B-41, 2-C-79 Li, D 2-C-73 Manford, E 2-C-83 Ignatius Arokia 2-D-117, 2-D-118, 2-D-118, 2-D-114, 2-D-112 Korecki, A 1-G-167, 2-G-163 Li, T 1-B-50, 1-F-160 Mangiarini, F 1-G-168 Igbal, M 1-C-66 Kouser, M 1-C-62 Liao, E 2-B-16 Mann, E 2-G-188 Igbal, A 1-C-75 Kozlowski, P 2-C-38 Lim, S 2-D-117 Marce, S 1-G-168 Igbal, A 1-C-75 Kozlowski, P 2-C-38 Lim, S 2-D-117 Marce, S 1-G-168 Igbal, A 1-C-75 Kozlowski, P 2-C-38 Lim, S	J.					2-C-64	Maley, J	2-C-78
Iffinca, M 2-B-28 Klein, M 2-F-141, 1-F-134 Lewy, R 1-F-151, 2-B-38, 2-F-133 Mancarci, B 2-C-75 Ignatius Arokia 2-C-67 Knauer, B 2-B-50 Li, C 1-B-37 Mancarci, O 1-B-48, 1-C-6 2-C-75 Mancarci, D 2-C-78 Marcarci, D 2-C-78 Marcarci, D 2-C-78 Marcarci, D </td <td></td> <td></td> <td>Klassen, T</td> <td>,</td> <td>Léveillé, P</td> <td></td> <td>Malik, A</td> <td>2-B-32, 2-B-40</td>			Klassen, T	,	Léveillé, P		Malik, A	2-B-32, 2-B-40
Ignatius Arokia Doss, P 2-C-67 Knauer, B 2-B-50 2-F-133 Mancarci, O 1-B-48, 1-C-4 2-C-75 Ikuta, N 2-B-48 Ko, R 2-B-29 Li, C 1-B-37 Manford, E 2-C-73 Ilarderet, I 1-F-134 Komal, P 1-B-41, 2-C-79 Li, H 1-A-1, 2-A-11 Mang, C 2-F-155 Inglis, J 2-D-117, 2-D-118, 2-D-124, 1-D-121 Korecki, A 1-G-167, 2-G-163 Li, T 1-B-50, 1-F-160 Mangiarini, F 1-G-168 Iqbal, M 1-C-66 Kouser, M 1-C-62 Liao, E 2-B-16 Mann, E 2-G-168 Isbola, A 1-C-75 Kozlowski, P 2-C-58 Lim, D 1-F-152 Marcet, S 1-G-168 Iturria-Medina, Y 1-C-61 KrawczyK, M 1-C-82 Lim, Q 2-G-165 Marcet, S 1-C-73 Iulianella, A 2-A-3 Kuebler, E 1-D-116, 2-C-71 Lim, Q 1-G-62, 2-F-143 Marin, P 2-G-95 Jacklin, D 1-B-24 Kuhlmann, N 1-B-34 Lin, P 2-B-40 Mari							Mancarci, B	2-C-75
Induct Induct <thinduct< th=""> <thinduct< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Mancarci, O</td><td>1-B-48, 1-C-90,</td></thinduct<></thinduct<>							Mancarci, O	1-B-48, 1-C-90,
Ikuta, N2-B-48Ko, R2-B-29Li, D2-C-73Manford, E2-C-83llarderet, I1-F-134Konal, P1-B-41, 2-C-79Li, H1-A-1, 2-A-11Mang, C2-F-155lnglis, J2-D-117, 2-D-118, 2-D-124, 1-D-121Korecki, A1-G-167, 2-G-163Li, T1-B-50, 1-F-160Mangiarini, F1-G-168lqbal, M1-C-66Koser, M1-C-62Liao, E2-B-16Mann, E2-G-168lshola, A1-C-75Kozlowski, P2-C-73Lim, D1-F-152Marcet, S1-G-168ltor, R1-F-147, 2-F-149Kraft, A1-D-102Lim, S2-D-117Marcet, S1-G-168luianella, A2-A-3Kuebler, E1-D-116, 2-C-71Lim, S2-G-165Marie, A2-B-19luianella, A2-A-3Kuebler, E1-D-116, 2-C-71Lin, C1-C-69, 2-F-143Marie, A2-B-19luianella, A2-D-109Kuuhmann, N1-B-34Lin, P2-B-840Marie, A2-B-38, 2-F-7Jarklin, D1-B-24Kuuhr, U1-B-51, 1-C-77Lin, C1-C-69, 2-F-113Marion, R1-F-151, 1-C-73Jarklin, M2-D-106Kuur, U1-B-51, 1-C-77Ling Lam, S2-C-73Marege, M1-C-65, 1-F-71Jarklin, M2-D-106Kuur, U1-B-51, 1-C-77Ling Lam, S1-G-167Margues, M1-C-73Jarkli, S1-C-94Kuur, U1-B-51, 1-C-77Ling Lam, S1-G-167Margues, M1-C-73Japabal, S1-C-94Ku		2007			Li, C	1-B-37		
Indirect, I I-F-134 Komal, P 1-B-41, 2-C-79 II, H 1-A-1, 2-A-11 Mang, C 2-F-155 Inglis, J 2-D-117, 2-D-118, 2-D-124, 1-D-121 Korecki, A 1-G-167, 2-G-163 Ii, T 1-B-50, 1-F-160 Mangiarini, F 1-G-168 Iqbal, M 1-C-66 Kosaka, B 2-C-73 Ii, Q 1-G-162, 2-G-163 Mann, E 2-G-168 Ishola, A 1-C-75 Kozlowski, P 2-C-58 Iiao, E 2-B-16 Marcet, S 1-G-168 Ituria-Medina, Y 1-C-61 KrawcyK, M 1-D-102 Iim, S 2-D-117 Marcet, S 1-G-168 Iulianella, A 2-A-3 Kuebler, E 1-D-102 Iim, S 2-D-117 Marcet, S 1-C-73 Iulianella, A 2-A-3 Kuebler, E 1-D-116, 2-C-71 Iin, C 1-C-69, 2-F-143 Marin, P 2-C-95 Jarklin, D 1-B-24 Kuhlmann, N 1-B-34 Iin, S 2-G-73 Marin, R 1-F-151, 1-C-72 Jarklin, D 2-D-106 Kumar, U 1-B-51, 1-C-77 Iindenberger, U 2-F-151 Marks, W 1-C-65, 1-F-15 Janali, M		2-B-48					Manford, E	2-C-83
Inglis, J 2-D-117, 2-D-118, 2-D-124, 1-D-121 Korecki, A 1-G-167, 2-G-163 Li, T 1-B-50, 1-F-160 Mangiarini, F 1-G-168 Idpal, M 1-C-66 Kosaka, B 2-C-73 Li, Y 1-G-162, 2-G-163 Man, E 2-G-168 Ishola, A 1-C-75 Kozlowski, P 2-C-58 Liao, E 2-B-16 Maplebeck, J 1-B-39 Ituria-Medina, Y 1-C-61 KrawczyK, M 1-D-102 Lim, S 2-D-117 Marcuzzo, S 1-C-73 Iulianella, A 2-A-3 Kuebler, E 1-D-116, 2-C-71 Lim, C 1-C-69, 2-F-143 Marin, P 2-C-95 Jacklin, D 1-B-24 Kuhlmann, N 1-B-34 Lin, S 2-C-73 Marin, P 2-G-95 Jamali, M 2-D-106 Kuar, U 1-B-51, 1-C-77 Lin, S 2-G-167 Marks, W 1-C-63, 1-F-151 Japabal, S 1-C-94 Kung, U 1-B-51, 1-C-77 Ling Lam, S 1-G-167 Marks, W 1-C-63, 1-F-151 Japabal, S 1-C-94 Kung, U 1-B-51, 1-C-77 Ling Lam, S							Mang, C	2-F-155
Ingrify 3 2 b 11, 1 b	,							
Index, Proc. 12.1 Noaka, B 2-C-Y3 Liao, E 2-B-16 Mapplebeck, J 1-B-39 Igbal, A 1-C-75 Kozlowski, P 2-C-58 Lim, D 1-F-152 Marcet, S 1-G-168 Itor, R 1-F-147, 2-F-149 Kraft, A 1-D-102 Lim, S 2-D-117 Marcuzzo, S 1-C-73 Ituria-Medina, Y 1-C-61 KrawczyK, M 1-C-82 Lim, W 2-G-165 Marie, A 2-B-19 Iulianella, A 2-A-3 Kuebler, E 1-D-116, 2-C-71 Lin, C 1-C-69, 2-F-143 Marin, P 2-C-95 Jacklin, D 1-B-24 Kuhlmann, N 1-B-34 Lin, S 2-C-73 Marino, R 1-F-151, 1-C-2-8-3, 2-F-151 Janali, M 2-D-106 Kumar, U 1-B-51, 1-C-77 Lindenberger, U 2-F-151 Marks, W 1-C-65, 1-F-1 Jan, A 1-C-67 Kupferschmidt, D 2-D-114 Ling Lam, S 1-G-167 Mareus, M 1-C-73 Jayabal, S 1-F-150 Kwan, V 2-A-7, 2-A-9 Liu, A 2-C-73 Maras, C 2-C-77 Jenkins, B 1-F-150 Kwan, V 2-A-7, 2							Mann, E	
Ishola, A 1-C-75 Kodc(,, M 1-C 02 Lin, D 1-F-152 Marcet, S 1-G-168 Ito, R 1-F-147, 2-F-149 Kraft, A 1-D-102 Lin, S 2-D-117 Marcet, S 1-C-73 Ituria-Medina, Y 1-C-61 KrawczyK, M 1-C-82 Lin, S 2-D-117 Marcet, S 1-C-73 Iulianella, A 2-A-3 Kuebler, E 1-D-116, 2-C-71 Lin, C 1-C-69, 2-F-143 Marin, P 2-C-95 Jacklin, D 1-B-24 Kuhlmann, N 1-B-34 Lin, S 2-C-73 Marin, R 1-F-151, 1-C Jaffal, S 2-D-106 Kumar, U 1-B-51, 1-C-77 Lindenberger, U 2-F-151 Marks, W 1-C-65, 1-F-1 Jan, A 1-C-67 Kupferschmidt, D 2-D-114 Ling Lam, S 1-G-167 Maragues, M 1-C-73 Jayabal, S 1-F-150 Kwan, V 2-A-7, 2-A-9 Lin, A 2-C-73 Maras, C 2-C-77 Jenkins, B 1-F-150 Kwan, V 2-A-7, 2-A-9 Lin, A 2-C-73 Maras, C 2-C-77 Jenkins, B 1-F-150 Kwan, V 2-A-7, 2-A-	lobal M							
Instant Image: Participant Image: Partited and participant Image:								
Indit, N Indit, N <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td></th<>							,	
Indiancella, A 2-A-3 Kuakcyn, M I-C62 Lin, C 1-C-69, 2-F-143 Marin, P 2-C-95 Jacklin, D 1-B-24 Kuhlmann, N 1-B-34 Lin, C 1-C-69, 2-F-143 Marin, P 2-C-95 Jaffal, S 2-D-109 Kulic, I 2-C-99 Lin, C 2-B-40 Marino, R 1-F-151, 1-C-2-8-38, 2-F-13 Jamali, M 2-D-106 Kumar, U 1-B-51, 1-C-77 Lindenberger, U 2-F-151 Marks, W 1-C-65, 1-F-1 Jan, A 1-C-67 Kupferschmidt, D 2-D-114 Ling Lam, S 1-G-167 Margues, M 1-C-73 Jayabal, S 1-C-94 Kuznicki, J 1-F-154 Litteljohn, D 1-C-84 Maras, C 2-C-77 Jenkins, B 1-F-150 Kwan, V 2-A-7, 2-A-9 Liu, A 2-C-73 Marshall, P 2-F-173 Joel, P 1-C-99 Lablans, A 1-C-95, 2-C-55 Liu, J 2-B-21, 2-C-53, Marshall, P 2-F-73		,						
Jacklin, D 1-B-24 Kuhlmann, N 1-B-34 Lin, P 2-B-40 Marino, R 1-F-151, 1-C-2-B-38, 2-F-7 Jaffal, S 2-D-109 Kulic, I 2-C-99 Lin, S 2-C-73 Marks, W 1-C-65, 1-F-1 Janali, M 2-D-106 Kumar, U 1-B-51, 1-C-77 Lindenberger, U 2-F-151 Marks, W 1-C-65, 1-F-1 Jan, A 1-C-67 Kupferschmidt, D 2-D-114 Ling Lam, S 1-G-167 Maragues, M 1-C-73 Jayabal, S 1-C-94 Kuznicki, J 1-F-154 Litteljohn, D 1-C-84 Maras, C 2-C-77 Joel, P 1-C-99 Lablans, A 1-C-95, 2-C-55 Liu, J 2-B-21, 2-C-53, Marshall, P 2-F-173								
Jamali, M 2-D-109 Kulic, I 2-C-99 Lin, S 2-C-73 Marks, W 1-C-57, I-C-77 Jamali, M 2-D-106 Kumar, U 1-B-51, 1-C-77 Lindenberger, U 2-F-151 Marks, W 1-C-65, 1-F-1 Jan, A 1-C-67 Kupferschmidt, D 2-D-114 Ling Lam, S 1-G-167 Maraues, M 1-C-73 Jayabal, S 1-C-94 Kuznicki, J 1-F-154 Litteljohn, D 1-C-84 Marras, C 2-C-77 Joel, P 1-C-99 Lablans, A 1-C-95, 2-C-55 Liu, J 2-B-21, 2-C-53, Marshall, P 2-F-173								1-F-151, 1-C-95,
Jamali, M 2-D-106 Kumar, U 1-B-51, 1-C-77 Lindenberger, U 2-F-151 Marks, W 1-C-65, 1-F-1 Jan, A 1-C-67 Kupferschmidt, D 2-D-114 Ling Lam, S 1-G-167 Marques, M 1-C-73 Jayabal, S 1-C-94 Kuznicki, J 1-F-154 Litteljohn, D 1-C-84 Marras, C 2-C-77 Joel, P 1-C-99 Lablans, A 1-C-95, 2-C-55 Liu, J 2-B-21, 2-C-53, Marshall, P 2-F-173							Munno, N	2-B-38, 2-F-133
Jana, A 1-C-67 Kupferschmidt, D 2-D-114 Ling Lam, S 1-G-167 Marques, M 1-C-73 Jayabal, S 1-C-94 Kuznicki, J 1-F-154 Litteljohn, D 1-C-84 Marras, C 2-C-77 Jenkins, B 1-F-150 Kwan, V 2-A-7, 2-A-9 Liu, A 2-C-73 Marshall, P 2-F-173 Joel, P 1-C-99 Lablans, A 1-C-95, 2-C-55 Liu, J 2-B-21, 2-C-53, Marshall, P 2-F-77							Marks W	
Jayabal, S 1-C-94 Kuznicki, J 1-F-154 Littlejohn, D 1-C-84 Maras, C 2-C-77 Jenkins, B 1-F-150 Kwan, V 2-A-7, 2-A-9 Liu, A 2-C-73 Marshall, P 2-F-173 Joel, P 1-C-99 Lablans, A 1-C-95, 2-C-55 Liu, J 2-B-21, 2-C-53, Marsters, C 1-A-7								
Jenkins, B 1-F-150 Kwan, V 2-A-7, 2-A-9 Liu, A 2-C-73 Marshall, P 2-F-173 Joel, P 1-C-99 Lablans, A 1-C-95, 2-C-55 Liu, J 2-B-21, 2-C-53, Marsters, C 1-A-7					-			
Joel, P 1-C-99 Lablans, A 1-C-95, 2-C-55 Liu, J 2-B-21, 2-C-53, Marsters, C 1-A-7								
Labidis, A 1-C-95, 2-C-55 Edd, 5 2 5 21, 2 C 55,			Kwan, V	2-A-7, 2-A-9				
Johnson, J 1-B-37 2-G-167 Martens, K 2-C-62			Lablans, A	1-C-95, 2-C-55	Liu, J			
	Johnson, J	1-B-37				2-6-167	ividiteris, K	2-0-2

AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER
Martin, D	1-C-72	Mousseau, D	1-C-76, 2-C-78	Ozur, A	2-B-36	Portales-Casamar, E	1-G-167
Martinez-Trujillo, J	1-F-136, 2-F-140,	Mui, K	2-C-88	Paik, S	1-C-77	Portnoy, S	1-A-10
	2-F-142, 2-F-156	Mukherjee, B	1-D-118	Pallen, C	2-B-31	Post, K	1-C-81
Mathalon, D	1-F-141	Munich, J	2-C-66	Palmert, M	1-A-10	Potter-Baker, K	1-C-60
Mathews, P	2-D-105	Munn, R	1-C-79	Pandey, A	1-B-26	Poulter, M	1-C-82
Mau, J	2-C-91	Munoz, D	1-C-79, 1-C-95,	Pandian, N	1-C-78, 2-C-61	Powell, C	1-C-62
Mazurek, M	2-C-86		1-D-114, 2-C-55,	Paolozza, A	1-C-79	Prager, R	2-B-15
McAllister, B	1-D-107		2-C-77	Parent, M	1-G-164	Prakash, S	1-C-67
McDiarmid, T	2-F-146	Munsie, L	1-C-68	Parisien, M	1-C-80	Prescott, I	2-B-38
McDonald, S	2-C-89	Munz, M	1-A-9	Parivash, S	1-D-123	Prescott, S	2-B-43, 2-D-115
McDonnell, M	2-F-155	Murphy, T	1-C-64, 1-C-87,	Park, D	1-A-3, 2-A-6	Prudhomme, M	1-G-164
McEwan, A	1-B-37		1-C-96, 1-D-115,	Parsons, M	2-B-37, 1-B-44,	Pruessner, J	2-F-137
McGee, A	1-D-123		1-D-124, 1-F-152,		2-C-88	Purchase, N	2-B-26
McGirr, A	1-F-152		1-G-171, 2-B-37,	Pasceri, P	1-C-99	Qin, T	2-C-72
McGlashan, T	1-F-141		2-D-104, 2-G-161,	Pasciuto, E	2-A-9	Qin, Z	2-C-61
Aclnerny, S	1-G-167		2-G-172	Pasquier, J	1-A-5	Qiu, L	1-A-10
McInnes, K	2-C-62	Murtaza, N	2-A-9	Patten, A	1-E-132, 2-C-66	Qiu, S	1-D-123
McKeown, M	2-C-73, 2-D-118	Mylvaganam, S	1-C-82	Patterson, Z	2-E-130	Quandt, J	1-G-172, 2-C-85
McKetton, L	2-D-119	Naci, L	1-F-149	Paul, P	2-A-9	Rafique, S	1-F-156
McKibben, T	1-F-139, 2-F-139	Naef, L	1-E-131	Pavlidis, P	1-B-47, 1-B-48,	Rah, S	1-B-42
McPhee, D	2-C-64	Nahirney, P	2-B-34, 1-C-83	,	1-C-90, 2-C-75	Rahim, T	2-C-85
Mebel, D	1-E-131	Nair, M	2-D-120	Pearcey, G	2-C-68	Rahman, T	1-A-9
Meconi, A	2-C-76	Nait Taleb Ali, H	1-D-119	Pearcey, G	2-C-70	Rakai, B	2-B-48
Mehina, E	2-B-33	Nakano, Y	2-B-24	Pearcey, G	2-D-122	Ramani, M	1-C-82
Meireles, A	1-C-73	Namjoshi, D	2-C-62	Pearson, K	1-D-127	Ramsay, E	1-G-162, 2-G-167
Viercaldo, V	1-C-74	Nanakumo, T	1-C-75	Pennington, P	1-C-76, 2-C-78	Ran, I	2-B-39
Mesbah-Oskui, L	1-B-40	Nashmi, R	1-B-41, 2-C-64,	Penty, N	2-C-79	Rangachari, M	2-0-39
Messaddeg, Y	1-G-164		2-C-79	Perdikis, D	2-F-151	Rankin, C	1-B-37, 1-C-69,
Meunier, M	2-G-164	Neil, S	1-G-172	Perez-Sanchez, J	2-D-123	Kalikili, C	1-Б-37, 1-С-б9, 2-F-143, 2-F-146
Mickleborough, M	2-F-139, 1-D-106,	Nesbit, M	2-F-148	Perkins, D	1-F-141	Rashid, A	1-(-74
witckiebolougii, wi	1-F-139, 2-F145	Neseliler, S	2-F-137	Pesquita, A	2-F-151	Rasman, B	2-D-124
Micu, I	2-C-83	Nguyen, D	2-F-149	Peters, R	1-D-121, 2-D-118	Rasmussen, S	2-0-124
Miller, F	1-A-13, 2-A-12	Nguyen, P	1-B-42	Petkau, T	2-C-87	Ratnayake, G	1-E-133
Villoy, K	2-C-94	Nieman, B	1-A-10, 2-F-158	Petrelli, B	2-A-10	Raymond, L	1-E-135 1-B-44, 1-C-57,
Villoy, K Vills, F	1-F-154, 1-B-36,	Nirujogi, R	1-B-26	Pfeifer, T	2-C-99	ndymonu, L	1-Б-44, 1-С-37, 1-С-96, 2-В-37,
viiiis, i	1-F-153	Niu, Y	1-C-58	Pham, N	2-G-170		2-B-47, 2-C-88,
Vilnerwood, A	1-B-34, 1-C-68	Novak, S	1-C-83	Phillips, A	1-C-52, 1-F-143,		2-C-91
Miner Wood, A Misra, V	1-C-93	Nusrat, L	2-C-80	r minps, A	1-E-153, 2-F-136,	Reeson, P	1-C-83, 2-B-34
Viisia, V Vizumoto, K	2-A-8	Nussbaum, P	2-F-143		2-F-138, 2-F-148	Renda, A	2-C-79, 1-B-41,
Modarresi, S	2-F-147	Nyarko, J	2-C-78, 1-C-76	Piazza, F	1-C-73	nendu, n	2-C-64
Moerman, D	2-G-171	O'Brien, M	2-D-121	Piechowicz, M	1-D-123	Restivo, L	2-F-157
		O'Brien, T	2-C-56	Piekna, A	1-C-99, 1-C-100	Reynolds, J	1-C-79, 1-C-82
Mogil, J	1-A-4, 1-C-86	O'Connor, T	2-B-27, 2-B-49	Pieper, F	2-F-156	Richards, B	1-F-159
Aohajerani, M	2-D-104	Ogundele, O	1-C-75	Piltonen, M	1-C-80	Richards, J	1-F-156
Mohsenzadeh, Y	1-D-117	Okamoto, K	1-B-16, 1-B-38,			Richter, M	2-A-9
Molday, L	2-G-163		1-G-170, 2-B-14	Pinchin, G	2-C-90	Rintoul, G	2-R-9 2-B-20
Molday, R	2-G-163	Okewole, A	2-C-81	Pind, M	2-A-10	Rizwan, A	2-D-20 2-D-125, 1-B-43
Aonnier, P	2-C-92	O'Leary, T	2-F-150	Pitman, K	2-E-132		
Aorales, D	1-A-8	Oliveira Ferreira de	1-D-120	Pittman, Q	2-C-52, 2-C-94	Robert, J	1-G-169, 2-C-57
Aorel, P	1-D-119	Souza, B		Plamondon, H	1-E-129	Rochefort, D	1-C-86
Aorgen, J	1-F-140	Olma, M	1-D-102	Plemel, J	2-C-83, 2-B-21,	Roig, M	2-F-155
Morisset–Lopez, S	2-C-95	O'Neill, M	2-C-82		2-C-53	Romano, T	2-C-56
Aoro, S	2-D-119	Opushnyev, S	1-B-20, 2-B-35	Plourde, M	1-F-155, 1-A-5	Rosa, R	2-C-72
Morris, J	2-C-77	Orr, E	1-F-140	Plow, E	1-C-60	Rosales, A	1-B-27
Morrison, D	1-C-74	Orser, B	2-D-123	Pochkhidze, N	2-F-152	Rosebush, P	2-C-86
Norshead, C	2-C-80	Otis, T	2-D-105	Podgorski, K	2-B-35	Rosenbaum, R	1-F-137, 1-F-148
Moscovitch, M	1-F-148	Owen, A	1-F-149	Pokrishevsky, E	1-C-53	Roska, B	2-D-127
Moshevand, M	1-D-124	Ozturk, A	2-A-10	Pollegioni, L	2-B-45	Roskams, A	2-C-82
Mothe, A	2-C-92	UZIUIN, M	2-1-IV	Pompeiano, M	2-E-128	Roskams, J	1-A-2, 1-B-23

POSTER AUTHOR INDEX

AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBEI
Ross, P	1-C-100	Shih, J	1-C-69	Sun, Y	1-D-105, 1-D-101,	Truesdell, A	1-C-91
Rouleau, G	1-C-86	Shih, Y	2-B-31		2-C-68, 2-C-70,	Truesdell, E	2-C-98
Roy, A	2-C-67	Shimell, J	2-B-41, 1-B-19		2-D-122	Truman, J	1-F-134
Royero, P	1-B-27	Shimizu, Y	2-C-99	Sunthoram, A	1-C-69	Tsang, M	2-B-20
Ruangkittisakul, A	1-G-161	Shin, S	1-C-56	Svoboda, D	2-A-6	Tsien, R	2-B-39
Rudin, M	2-G-168	Shishkin, R	2-G-170	Swanson-Newman,	1-G-167	Tsuang, M	1-F-141
Rudyk, C	1-C-84	Shultz, S	2-C-89, 2-C-56	M		Tsutsui, S	2-C-83
				Swayne, L	1-A-12, 1-C-85,		1-A-10
Rungta, R	2-B-40 2-C-87	Shute, L	1-E-133, 1-E-130	5110/110/2	2-B-15	Turnbull, D	
Russell-Schulz, B		Siegmund, G	1-D-108, 2-D-102,	Swindale, N	2-D-126	Turner, R	1-B-43, 2-D-125
Ruthazer, E	1-A-9, 1-B-28,	C1	2-D-108	Sylvestre, J	1-G-168	Tyson, J	2-B-40
	2-A-5, 2-B-45	Silasi, G	1-C-87, 1-D-115,	Szabo, N	1-A-4	Ukalovic, K	1-C-92
Saab, B	2-G-168	C:1	1-D-124, 2-G-161	Szulc, K	1-A-10	Ulla, M	1-C-61
Sachewsky, N	2-C-80	Silverman, J	2-C-65		2-F-151	Valencia, M	1-G-170, 1-B-38
Sachs, A	2-F-142	Silverman, M	1-C-92	Szymanski, C		van Donkelaar, P	1-D-113, 2-D-111
Sachs, A	2-F-156	Simpson, E	1-G-167, 2-G-163	Taghibiglou, C	2-G-170	van Eede, M	2-F-158
Sadeghian, H	2-C-72	Singh, K	2-A-7, 2-A-9	Takehara-Nishiuchi,	1-F-159	Van Horn, M	2-B-45
Sakaki, K	2-G-169	Singhal, A	2-F-154	K	0.0.40	Vandal, M	1-C-67
Galesse, C	2-G-164	Sjöström, J	2-C-60	Takkala, P	2-B-43	Vandenbosch, R	2-A-6
Salter, M	1-B-29, 1-B-39,	Slack, R	1-A-3, 2-A-6	Tam, R	2-C-73	Vanni, M	1-D-124, 1-C-87,
	1-C-99, 1-C-100	Smith, A	2-C-90	Tannenbaum, B	2-F-137	,	1-G-171, 2-B-37
Salvalaggio, G	1-C-73	Smith, P	1-B-14	Tassew, N	2-C-92	Varnerin, N	1-C-60
Samuel, A	1-F-134	Smith-Dijak, A	2-C-91	Tatarnikov, I	1-C-68	Vaucher, E	1-D-110
Sánchez-Arias, J	1-C-85	Snow, N	2-F-155	Tauskela, J	2-C-71	Vavasour, I	2-C-73
Sanders, S	2-C-88, 1-B-44,	Snutch, T	1-C-65, 1-F-135,	Taylor, C	1-C-70	Vavra, V	2-B-46
unders, s	1-C-72	Shutch, I	1-F-143, 2-C-58	Taylor, J	2-G-167, 1-G-162,	Vecchiarelli, H	2-C-61
ankarasubramanian,		Snyder, J	2-A-2, 2-F-150,	, ,	2-G-167		
/	1-C-00	Silyaci, J	2-F-153	Taylor, S	1-C-89	Verbeek, M	2-C-94
Santyr, B	1-B-19	Soares, C	1-B-45, 1-B-53	Tebaikin, D	1-B-47, 1-B-48	Verge, V	1-C-93
Saranchova, Y	2-B-20	Sodums, D	1-F-157	Tennant, K	2-C-93, 1-C-83	Verhaegen, M	1-G-168
Sargin, D	1-C-74		1-B-46	Teskey, C	2-B-48	Vetere, G	2-F-157
-		Soltani, S		Tetzlaff, W	1-C-64, 2-B-21,	Vetrici, M	2-C-63, 1-C-91
Sawchuk, S	1-E-132	Somvanshi, R	1-B-51, 1-C-77	iciziaii, w	2-C-53, 2-G-167	Viktor, M	2-F-151
Sawyer, T	2-G-170	Son, A	2-C-80	Thivierge, J	1-B-35, 1-D-116,	Visanji, N	2-C-77
Scherer, S	1-C-99, 1-C-100,	Song, B	1-C-88	minierge, J	2-C-71	Vousden, D	2-F-158
	2-A-7, 2-A-9	Song, W	1-B-50, 1-C-88,	Thomas A		Walker, E	1-F-141
Schmidt, M	1-B-44		1-C-98, 1-F-142,	Thomas, A	1-G-162, 2-G-167	Walker, S	2-A-7, 2-A-9
Schmouth, J	1-C-86		1-F-160	Thomas, G	1-B-31	Walsh, C	1-G-162, 2-G-167
Schmucker, D	2-A-1	Sorensen, P	1-C-67	Thomas, T	2-G-166	Wamsteeker	2-E-129
Schneider, A	2-D-106	Sotocinal, S	1-A-4	Thompson, J	1-B-15, 2-E-132	Cusulin, J	2 2 127
Schohl, A	1-B-28	Southwell, A	2-C-88	Thompson, L	2-B-44	Wang, C	1-D-114
Schouten, A	1-D-108, 2-D-108	Souza, I	2-B-22	Thompson, R	2-B-13, 2-B-48	Wang, E	1-D-125, 1-G-163
Schumacher, A	1-F-147	Spacek, M	2-D-126	Thompson, T	1-C-99, 1-C-100	wany, i	2-G-160
Scott, L	2-B-48	Spencer Noakes, L	2-F-158	Tian, Y	1-G-162	Wang, J	
Scott, S	1-C-87, 1-D-112,	Spindler, C	1-C-73	Timbers, T	2-G-171		1-C-89, 2-B-31
5000, 5	1-D-115, 1-D-126,	Sprecher, S	1-F-134	Timofeev, I	1-В-46, 2-В-36	Wang, L	2-B-47
	2-G-161	Staley, K	2-C-54	Tirado, M	1-B-27	Wang, P	1-F-152
Scotto-Lomassese, S	1-D-119			Toker, L	1-C-90, 1-B-48,	Wang, T	2-C-60
Segabinazi, E	1-C-73	Steeves, J	1-F-156, 2-D-119	lonel, E	2-C-75	Wang, Y	1-F-154, 2-B-19,
5 ,		Stemkowski, P	2-B-22	Tomy, G	1-E-133		2-D-104, 2-F-136,
beib, D	2-F-153	Stephany, C	1-D-123	Topolnik, L	2-B-30		2-F-138, 2-G-170
eidman, L	1-F-141	Stevens, K	1-A-3	1 1		Warda, S	2-B-20
eigneur, J	1-B-46	Stewart, A	2-C-61	Tóth, K	2-B-17	Ward-Able, T	2-C-62
eira, O	2-G-167	Stewart, C	2-C-61	Traboulsee, A	2-C-73	Wark, J	2-C-56
ielk, J	1-F-145	Stukas, S	1-G-169, 2-C-57	Trang, T	1-D-107, 2-F-134	Wasserman, W	1-G-167, 2-G-163
Sergio, L	2-D-107	Sturgeon, R	2-B-42	Tremblay, S	2-F-156	Watt, A	1-C-94
habanzadeh, A	2-C-92	Stys, P	2-C-83	Trenholm, S	2-D-127	Wei Wu, C	2-C-96
Sharif-Naeini, R	2-D-101	Summerfeldt, K	1-C-89	Treue, S	1-F-136	Wei, W	1-C-99, 1-C-100
Sharp, Z	2-C-76	Sun, M	2-C-56	Tripathy, S	1-B-48, 1-B-47,	Weijer, C	1-F-149
Sharples, S	1-D-122	Sun, X	1-A-11		1-C-90, 2-C-75	Weilinger, N	2-B-48, 2-B-13
Shestopalov, V	1-C-85	5 din / A		Trudeau, D	1-C-89	Weinberg, J	2-D-40, 2-D-13 2-A-174, 2-A-4

AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER	AUTHOR	POSTER NUMBER
Wellington, C	1-G-169, 2-C-57,	Xuan, Z	1-C-62	Zhao, Y	1-D-128, 1-G-161	Hidalgo, A	2-IBRO-177
	2-C-99	Yamamoto, T	2-B-19	Zhou, M	1-G-167	Justo, G	1-IBRO-174
Wertz, A	2-D-127	Yamamoto, Y	2-D-120	Zhou, W	1-B-50	Kazlauskas, N	1-IBRO-173
Vheeler, A	2-F-157	Yan, J	1-D-128	Zhou, X	2-C-61	Kellaway, L	2-IBRO-178
Whelan, P	1-D-122	Yang, G	2-A-12, 1-G-167	Zhu, Y	2-B-43	Kroner, A	1-IBRO-180
White, A	1-G-162	Yates, J	1-C-72	Zis, O	1-C-88	Lehmann, M	1-IBRO-176
Vhite, E	1-B-49	Yau, S	2-C-98, 1-C-91,	Zlatic, M	1-F-134	Lopes, A	2-IBRO-175
Vhittingstall, K	1-A-5		2-C-63	Zoidl, G	1-C-82	López-León, M	1-IBRO-176
Vhitwell, R	2-D-110	Ying, Z	1-C-93	Zou, P	1-G-161	Macharia, R	1-IBRO-177
Vicki-Stordeur, L	1-C-85, 2-B-15	Yiu, A	1-C-74, 2-F-158	Zou, S	1-B-51	Magiri, E	1-IBRO-177
Vild, A	1-G-162	Yong, V	2-C-83	Zwaenepoel, D	1-G-162, 2-G-167	Márquez, R	1-IBRO-175
Vilkinson, A	2-C-62	Yoshida, M	2-B-50			Marzouki, H	2-IBRO-176
Villiams, S	2-F-140	Young, K	2-B-16	IBRO – Internatio	nal	Masiga, D	1-IBRO-177
Vilson, N	1-D-126	Yu, A	1-G-172, 2-C-85	Brain Research Or		Massieu, L	1-IBRO-178
Vinters, B	1-B-24	Yu, R	2-A-2, 2-F-153	Aboussaleh, Y	2-IBRO-176	Matus, S	2-IBRO-179
Visniewska, M	1-F-154	Yuan, Q	1-D-118, 2-B-26,	Adelita, T	1-IBRO-174	Medinas, D	2-IBRO-179
Vispinski, N	1-F-158		2-F-147	Aguayo, F	1-IBRO-174	Mietto, B	1-IBRO-180
Vissem, D	2-C-95	Yung, A	2-C-58	Aguayo, 1 Ahami, A	2-IBRO-176	Montiel, T	1-IBRO-178
Vither, R	1-C-95	Yuzwa, S	1-A-13	Artis, A	2-IBRO-176	Morel, G	1-IBRO-176
Vither, R	2-C-55	Zacchia, M	2-F-137	Ba-M'Hamed, S	1-IBRO-179	Muñoz-Llanoz, M	1-IBRO-175
Vong, C	1-D-127, 2-A-11	Zamini, A	1-C-89	Bargsted, L	2-IBRO-179	Murithi, M	1-IBRO-177
Vong, K	1-G-167	Zamponi, G	1-B-43, 2-B-22,	Bennis, M	1-IBRO-179	Nyanjom, S	1-IBRO-177
Vood, E	1-F-150		2-B-51, 2-D-125	Bitiktas, S	2-IBRO-176	Ouhaz, Z	1-IBRO-179
Voodard, C	1-C-96	Zandstra, P	1-A-13	Campolongo, M	1-IBRO-173	Pacheco, A	1-IBRO-175
Voodin, M	1-B-22, 1-B-25,	Zapotoczny, N	2-C-68	Castillo, C	2-IBRO-175	Porcionatto, M	1-IBRO-174
	1-B-32, 2-B-23	Zareyan, S	2-C-99	Cunha, F	2-IBRO-177 2-IBRO-175	Raimondo, J	2-IBRO-178
Voods, R	2-D-105	Zaslavsky, K	1-C-99, 1-C-100	Cunha, F Cunha, T	2-IBRO-175 2-IBRO-175	Rojas, P	1-IBRO-175
Voods, S	1-F-141	Zehr, E	1-D-101, 1-D-105,	David, S	1-IBRO-180	Rozas, P	2-IBRO-179
Voodward, M	1-C-97		2-C-70, 2-C-68,	David, S Depino, A	1-IBRO-180	Silva, J	2-IBRO-175
Voolf, C	1-D-109		2-D-122	Depino, A Dolu, D	2-IBRO-175	Silva-Grecchi, T	2-IBRO-177
Vorely, P	1-B-26	Zeighami, Y	1-C-61			Stilhano, R	1-IBRO-174
Vright, D	2-C-56	Zeilhofer, H	1-A-4	Fiedler, J	1-IBRO-175	Suer, C	2-IBRO-176
Vu, Y	1-B-50	Zeng, J	1-F-160	Fuentealba, J	2-IBRO-177	Talbot, T	2-IBRO-175
lia, F	1-F-159	Zhang, F	2-B-51	García-Pérez, A	1-IBRO-175	Toledo, J	2-IBRO-177
iao, D	1-G-171, 1-D-124	Zhang, S	2-C-100, 1-B-50,	Geronimo-Olvera, C	1-IBRO-178	Tomes, H	2-IBRO-178
(iao, W	2-B-49, 2-B-27		1-F-142	Girolami, E	1-IBRO-180	Uriarte, M	1-IBRO-176
(ie, Y	2-G-172, 1-F-152	Zhang, W	1-C-100, 1-C-99	Goya, R	1-IBRO-176	Zhang, J	1-IBRO-180
liong, C	1-D-128	Zhang, X	2-C-61	Gracía-Rojo, G	1-IBRO-175	2.10119, 5	. 10110 100
(u, Q	1-C-98	Zhang, Z	1-D-128	Han, S	1-IBRO-174		
		Zhao, X	2-C-71	Hetz, C	2-IBRO-179		

POSTER SESSION 1 - MONDAY, MAY 25, 2015

A – Development

1-A-1 Lipid mediator prostaglandin E2 alters calcium homeostasis during neuronal differentiation in neuroectodermal stem cells

*Jennilee Davidson*¹, Hongyan Li¹, Dorota Crawford¹ ¹York University

1-A-2 Spatio-Temporal Heterogeneity of the Spinal Cord Central Canal

*Kathryn Douglas*¹, Dongho Lee¹, Jane Roskams¹ ¹University of British Columbia

1-A-3 The Role of Activator E2Fs in Stem Cell Maintenance during Neurogenesis

Raghda Gemae¹, Mireille Khacho¹, Alysen Clark¹, Kristen Stevens¹, David Park¹, Ruth Slack¹

¹University of Ottawa

1-A-4 Hoxb8 intersection defines a role for Lmx1b in excitatory dorsal horn neuron development, spinofugal connectivity and nociception

*Nora Szabo*¹, Ronan V. da Silva¹, Susana G. Sotocinal², Hanns Ulrich Zeilhofer³, Jeffrey S. Mogil², Artur Kania¹

¹IRCM (Institut de recherches cliniques de Montreal), ²McGill University, ³University of Zurich

1-A-5 Docosahexaenoic acid status and neurodevelopment at birth are comparable in controls and neonates born to well-controlled gestational diabetes mellitus

*Pauline Léveillé*¹, Jean-Luc Ardlouze³, Jean-Charles Pasquier², Charles Deacon², Kevin Whittingstall², Mélanie Plourde²

¹Centre de recherche sur le vieillissement, ²Université de Sherbrooke, ³Université de Sherbrooke, département de médecine

1-A-7 The Effect of Microglia on Progenitor Cells During Tuberal Hypothalamic Development *Candace Marsters*¹

¹University of Calgary

1-A-8 In Situ Imaging of Intracellular Axon Guidance Signaling *Daniel Morales*¹, Artur Kania¹

¹McGill University

1-A-9 Neuronal activity of surrounding axons instructs retinal ganglion cell axon growth in the Xenopus laevis visual system *Martin Munz*¹, Tasnia Rahman¹, Edward Ruthazer¹

¹McGill University

1-A-10 Imaging the longitudinal development of structural sex differences in the mouse brain using in vivo manganese enhanced magnetic resonance imaging

*Lily Qiu*¹, Kamila Szulc², Brian Nieman², Sharon Portnoy¹, Daniel Turnbull³, Mark Palmert¹, Jason Lerch²

¹University of Toronto, ²The Hospital for Sick Children , ³New York University

1-A-11 AF1Q Interacts with TCF7 to Facilitate Neural Stem Cell Proliferation *Xiulian Sun*¹

¹Shandong University

1-A-12 Identification of a novel interaction between Pannexin 1 and Collapsin response mediator protein 2 that regulates neuronal development

Esther Carmona-Wagner¹, Leigh Anne Swayne¹

¹University of Victoria

1-A-13 Autocrine/paracrine control of neural precursors: an integrated proteomic and transcriptomic approach for defining the cortical precursor niche

Scott Yuzwa[†], Geoff Clarke², Peter Zandstra², David Kaplan¹, Freda Miller¹

¹The Hospital for Sick Children, ²University of Toronto

B - Neural Excitability, Synapses, and Glia: Cellular Mechanisms

1-B-14 Acute Actions of Gabapentinoids on Neuropathic Spinal Cord Slices: Preferential Actions on Excitatory Neurons Sascha Alles¹, Nataliya Bukhanova¹, Peter Smith¹

¹University of Alberta

1-B-15 Projection-target dependent effects of orexin and dynorphin on VTA dopamine neurons

Corey Baimel¹, Stephanie Borgland², Jennifer Thompson³ ¹University of British Columbia, ²University of Calgary, ³Medical University of South Carolina

1-B-16 Two-photon optogenetics for controlling PDE activity in living neurons

Fiona Bergin¹, Kenichi Okamoto¹

¹University of Toronto

1-B-17 Microglia rapidly adopt a filopodia-rich phenotype upon oxygen depletion by sensing tissue acidosis

*Louis-Philippe Bernier*¹, Lasse Dissing-Olesen¹, Jasmin Hefendehl¹, Jeffrey LeDue¹, Brian MacVicar¹

¹University of British Columbia

1-B-19 Activity-Regulated Trafficking of the Palmitoyl-Acyl Transferase DHHC5

Stefano Brigidi¹, Brendan Santyr¹, Jordan Shimell¹, Blair Jovellar¹, Shernaz Bamji¹

¹University of British Columbia

1-B-20 Mitochondria regulation of neuronal structural and functional plasticity *Janaina Brusco*¹, Serhiy Opushnyev¹, Kurt Haas¹

aina Brusco", Serniy Opusn -

¹UBC

1-B-21 Scavenging reactive oxygen species initiates GABA A receptor-mediated electrical suppression in anoxia-tolerant turtle neurons

Leslie Buck¹, David Hogg¹

¹University of Toronto

1-B-22 Regulation of Chloride Homeostasis by NMDA Receptors Jonah Chevrier¹, Vivek Mahadevan¹, Melanie Woodin¹ ¹University of Toronto

1-B-23 Heterogeneous populations of neural stem progenitor cells and astrocytes express brain lipid binding protein in aged human neurogenic niches

Athena Chou¹, Jane Roskams¹

¹University of British Columbia

1-B-24 Nicotinic receptor signaling in principal neurons of the mouse hippocampal formation during postnatal development *Beryl Chung*¹, Derek Jacklin¹, Warren Bignell¹, Boyer Winters¹, Craig Bailey¹

¹Unviersity of Guelph

1-B-25 Inhibitory Synaptic Transmission and KCC2 Function in the Brain of Huntington's Disease

Zahra Dargaei¹, Melanie Woodin¹

¹University of Toronto

1-B-26 Homeostatic scaling of excitatory synapses during sleep *Graham Diering*¹, Raja Nirujogi¹, Paul Worely¹, Akhilesh Pandey¹, Richard Huganir¹

¹Johns Hopkins University

1-B-27 Identification of Na+/H+ exchanger as a possible second target for Bactridine 2

*Lisbeth Garcia*¹, Pedro Royero², Gina D?Suze³, Arnaldo Rosales³, Marianela Tirado¹, Cecilia Castillo¹

¹Instituto de Estudios Avanzados, ²Universidad Simon Bolivar, ³Instituto Venezolano de Investigaciones Científicas

1-B-28 Altered TORC1-dependent protein synthesis dysregulates the excitatory-inhibitory balance and dendritic branching in vivo

Delphine Gobert², Anne Schohl², Edward Ruthazer²

¹McGill University, ²Montreal Neurological Institute

1-B-29 Calcium Responses to Single Action Potentials in Spinal Cord Lamina I Neurons are Mediated by T-Type VGCCs *Erika Harding*¹, Michael Salter¹

¹The Hospital for Sick Children

1-B-30 Anoxic regulation of mitochondrial membrane potential and ROS production leads to electrical suppression in turtle cerebral cortex

*Peter Hawrysh*¹, David Hogg¹, Les Buck¹

¹University of Toronto

1-B-31 Serine 863 regulates surface expression of GluA1 and is Phosphorylated by PAK3

*Natasha Hussain*¹, Gareth Thomas², Richard Huganir¹ ¹Johns Hopkins University, ²Temple University School of Medicine

1-B-32 Interactions between excitatory synapse proteins and KCC2 influence KCC2 function and GABAergic inhibition *Sahara Khademullah*¹, Vivek Mahadevan¹, Melanie Woodin¹

¹University of Toronto

1-B-33 Modulation of PTEN/mTOR pathway through Ndfip1 over-expression promotes neuronal survival and regeneration following injury

*Mohamad Khazaei*¹, Michaeil Fehlings² ¹Toronto Western Research Institute, ²University of Toronto

1-B-34 Activity-dependent and bi-directional plasticity of glutamate synapses on striatal projection neurons in cortico-striatal co-cultures.

*Naila Kuhlmann*¹, Li-Ping Cao¹, Austen Milnerwood¹ ¹Centre for Applied Neurogenetics, UBC

1-B-35 Spatiotemporal transformations of local calcium dynamics during clustered synapse development *Kevin Lee*¹, Cary Soares¹, Jean-Philippe Thivierge¹, Jean-Claude Béïque¹ ¹University of Ottawa

1-B-36 Short-term consumption of high fat food increases long lasting excitatory synaptic transmission onto VTA dopamine neurons

*Shuai Liu*¹, Andrea Globa², Fergil Mills², Shernaz Bamji², Stephanie Borgland¹

¹University of Calgary, ²University of British Columbia

1-B-37 The ciliary gene, EFHC1, implicated in human epilepsy, modulates dopamine signalling in C. elegans *Catrina Loucks*¹, Andrea McEwan², Chunmei Li¹, Jacque-Lynne Johnson¹, Catharine Rankin², Michel Leroux¹

¹Simon Fraser University, ²University of British Columbia

1-B-38 Optogenetic control of second messenger dynamics in dendritic spines during synaptic plasticity using a two-photon approach

*Thomas Luyben*¹, Jelena Borovac¹, Fiona Bergin¹, Megan Valencia¹, Mustafa Khan¹, Kenichi Okamoto¹

¹The Lunenfeld-Tanenbaum Research Institute

1-B-39 Sex differences in the involvement of spinal P2X4 receptors and BDNF in pain hypersensitivity induced by peripheral nerve injury

Josiane Mapplebeck², Simon Beggs², Michael Salter² ¹Hospital for Sick Children, ²The Hospital for Sick Children

1-B-40 Enhanced thalamic GABAAR-mediated spill-over inhibition elicits anesthetic-like changes in electrocortical activity that do not require T-type Ca2+ channel activation *Lia Mesbah-Oskui*¹, Richard Horner¹

¹University of Toronto

1-B-41 cAMP-dependent protein kinase inhibits α7 nicotinic receptor activity in layer 1 cortical interneurons through activation of D1/D5 dopamine receptors *Raad Nashmi*¹, Pragya Komal¹, Anthony Renda¹, Raad Nashmi¹

¹University of Victoria

1-B-42 Norepinephrine Protects Synapses from Depotentiation by Priming Translation-Dependent LTP.

Sean Rah¹, Saby Maity¹, Peter Nguyen¹

¹University of Alberta

1-B-43 IKCa channels are a critical determinant of the slow AHP in hippocampus

*Brian King*¹, Arsalan Rizwan¹, Hadhimulya Asmara¹, N. Colin Heath¹, Jordan Engbers¹, Steven Dykstra¹, Theodore Bartoletti¹, Shahid Hameed¹, Gerald Zamponi¹, Ray Turner¹

¹The University of Calgary

1-B-44 Effects of wild-type and mutant huntingtin on the in vitro corticostriatal synapse *Mandi Schmidt*¹, Matthew Parsons¹, Caodu Buren¹, Shaun Sanders¹, Lynn Raymond¹, Michael Hayden¹

¹University of British Columbia

POSTER SESSION 1 - MONDAY, MAY 25, 2015

1-B-45 Homeostatic influence on Hebbian plasticity rules at central synapses

*Cary Soares*¹, Jean-Claude Béïque¹ ¹University of Ottawa

1-B-46 Control of trauma-induced epileptogenesis in mice and its age dependency

Sara Soltani¹, Josée Seigneur¹, Sylvain Chauvette¹, Igor Timofeev¹ ¹Institut universitaire en santé mentale de Ouébec

1-B-47 Identifying sources of study-to-study variability in neuronal electrophysiology data

Dmitrii Tebaikin¹, Dmitrii Tebaikin¹, Shreejoy Tripathy¹, Paul Pavlidis¹ ¹University of British Columbia

1-B-48 A brain-wide analysis of neuronal transcriptomic and electrophysiological diversity

*Shreejoy Tripathy*¹, Dmitrii Tebaykin¹, Ogan Mancarci¹, Lilah Toker¹, Paul Pavlidis¹

¹University of British Columbia

1-B-49 Mild traumatic brain injury produces more immediate and prolonged LTP deficits in the juvenile female brain *Emily White*¹, Jessica DeVries¹, Jennifer Graham¹, Sean Kennedy¹, Crystal Bostrom¹, Brian Christie¹

¹University of Victoria

1-B-50 APP facilitates the RCAN1-mediated apoptosis *Yili Wu*¹, Yu Deng¹, Shuting Zhang¹, fang cai¹, weihui zhou¹, tingyu li¹, weihong song¹

¹The University of British Columbia

1-B-51 Cannabinoid receptor 1 and Somatostatin receptor subtypes colocalization in rat brain

Ujendra Kumar¹, Shenglong Zou¹, Rishi Somvanshi¹ ¹UBC Pharmaceutical Sciences

C - Disorders of the Nervous System

1-C-52 Dopamine terminals mediate vesicular release of L-DOPA-evoked enhancement of dopamine in the 6-OHDA lesioned striatum.

*Soyon Ahn*¹, Bonita Ma¹, Anthony Phillips¹ ¹University of British Columbia

1-C-53 In ALS, misfolded wtSOD1 induced by pathological FUS or TDP-43 transmits intercellularly and is propagated misfolding-competent

Edward Pokrishevsky¹, Leslie Grad¹, Neil Cashman¹

¹Brain Research Centre

1-C-54 Rauwolfia vomitoria root extract improves behaviour and provides region-specific reduction in Aβ plaque coverage in the 5xFAD mouse model of Alzheimer's Disease.

*Katerina Allan*¹, Sunday Agba Bisong Sultan Darvish¹, Richard Brown¹ ¹Dalhousie University

1-C-55 Neuroanatomical and microstructural differences in the brain of a Mecp2 mouse model of Rett syndrome

Rylan Allemang-Grand², Jacob Ellegood², Jason Lerch² ¹University of Toronto, ²Hospital for Sick Children

1-C-56 Age-related changes in frailty in the 3xTgAD and 5xFAD mouse models of Alzheimer?s disease *Sooyoun Shin*¹, Richard Brown¹

¹Dalhousie University

1-C-57 Effects of uncoupling 2B-NMDA receptors from PSD-95 by Tat-NR2B9c in Huntington?s disease corticostriatal co-culture *Caodu Buren*¹, Lynn Raymond¹

¹The University of British Columbia

1-C-58 The Small RNA Molecule miR-16-5p is an Early Biomarker of Neurodegeneration and a Potential Target for Therapy in Prion Disease

Kristyn Campbell¹, Yulian Niu², Stephanie Booth¹

¹University of Manitoba & Public Health Agency of Canada, ²Public Health Agency of Canada

1-C-59 Two unique activities in the brain of Parkinson's disease model rats: High-Voltage-Spindles and Beta-Oscillation *Chi-Fen Chuang*¹

¹National Tsing Hua University

1-C-60 Neurophysiologic response to bilateral vs. unilateral therapy for chronic stroke patients with varying degrees of motor impairment

David Cunningham¹, Jayme Knutson², Kelsey Potter-Baker¹, Vishwanath Sankarasubramanian¹, Nicole Varnerin¹, Corin Bonnett¹, Andre Machado¹, Ela Plow¹

¹Cleveland Clinic, ²MetroHealth Medical Center

1-C-61 Parkinson's disease targets intrinsic brain networks Yashar Zeighami¹, Yashar Zeighami¹, Miguel Ulla², Yasser Iturria-Medina¹, Mahsa Dadar¹, Kevin Larcher¹, Douglas Collins¹, Alan Evan¹,

Alain Dagher¹ ¹Montreal Neurological Institute, McGill University, ²Centre Hospitalier Universitaire de Clermont-Ferrand

1-C-62 Striking differences in the neuroanatomical phenotype of the Neuroligin3 R451C knock-in and the Neurexin1a knock-out. *Jacob Ellegood*¹, Felipe Espinosa-Becerra², Mehreen Kouser², Zhong Xuan², Craig Powell², Jason Lerch¹

¹The Hospital for Sick Children, ²UT Southwestern

1-C-63 VIP interneuron re-modelling during stroke recovery. *Kimberly Gerrow*¹, Craig Brown¹

¹University of Victoria

1-C-64 Novel motor cortical output pathways following spinal cord injury despite extensive corticospinal loss revealed by optogenetic mapping

*Brett Hilton*¹, Eitan Anenberg¹, Thomas Harrison¹, Jamie Boyd¹, Timothy Murphy¹, Wolfram Tetzlaff¹

¹University of British Columbia

1-C-65 Behavioural comorbidities related to psychiatric disorders in a rat model of absence epilepsy: effects of the T-type calcium channel blocker Z944

John Howland¹, Wendie Marks¹, Mary Cavanagh¹, Quentin Greba¹, *Stuart Cain*², Terrance Snutch³

¹University of Saskatchewan, ²University of British Columbia, ³University of British Columba

1-C-66 Thioredoxin system modulates neural stem cell proliferation and differentiation: Implication on Neurotrauma treatment

Mohamed Ariff Iqbal¹, Alysa Almoujela¹, Eftekhar Eftekharpour¹ ¹University of Manitoba

1-C-67 The role of eukaryotic elongation factor-2 kinase (eEF2K) activity in Alzheimer?s disease pathogenesis and relevance for novel therapies.

*Asad Jan*², Gabriel Leprivier², Syam Prakash², Milene Vandal³, Frederic Calon³, Michael Hayden¹, Poul Sorensen¹

¹University of British Columbia, ²BC Cancer Research Centre, ³University of Laval

1-C-68 Characterization of AMPAR surface recycling and synaptic transmission in a novel D620N knock-in mouse model of Parkinson?s disease.

*Chelsie Kadgien*¹, Lise Munsie¹, Igor Tatarnikov¹, Li Ping Cao¹, Austen Milnerwood¹, Matthew Farrer¹

¹University of British Columbia

1-C-69 Alcohol tolerance & histone modifications: histone methylation plays a role in altered response to second alcohol exposure

*Conny Lin*¹, James Shih¹, Ankie Hung¹, Ashvini Sunthoram¹, Catharine Rankin¹

¹University of British Columbia

1-C-70 Assessment of attention behaviour and cholinergic signaling in male mice following developmental ethanol exposure.

*Emma Louth*¹, Warren Bignell¹, Christine Taylor¹, Craig Bailey¹ ¹University of Guelph

1-C-71 Investigation of --alpha-synuclein phenotype in primary cortical cultures from LRRK2 knockout mice Sarah MacIsaac¹

¹University of British Columbia

1-C-72 Assembly of the mammalian palmitoylome indicates a pivotal role for palmitoylation in diseases and disorders of the nervous system

Dale Martin¹, Shaun Sanders¹, Stefanie Butland¹, Mathieu Lavallée-Adam², Diego Calzolari³, Chris Kay¹, John Yates³, Michael Hayden¹

¹University of British Columbia, ²The Scripps Research Intstitute, ³The Scripps Research Institute

1-C-73 Isolated and combined effects of early-enriched environment and treadmill walking in a model of cerebral palsy in rats: motor behavior aspects

André Meireles¹, Marília Marques¹, Chistiano Spindler¹, Ethiane Segabinazi¹, Francele Piazza¹, Otávio Augustin¹, Gabriela Salvalaggio¹, Simone Marcuzzo¹

¹Federal University of Rio Grande do Sul

1-C-74 Restoring ability to form new, and recover old "lost", memories in mice that model Alzheimer's disease *Valentina Mercaldo*¹, Adelaide Yiu¹, Asim Rashid¹, Derya Sargin²,

Jeimmy Marcela Cerón González², Daniel Morrison¹, Paul Frankland¹, Sheena Josselyn¹

¹Hospital for Sick Children, ²University of Toronto

1-C-75 -NMDA R/+VDR Pharmacological Phenotype as a Novel Therapeutic target in Relieving Motor-Cognitive Impairments in Parkinsonism

Olalekan Ogundele¹, Tarebi Nanakumo¹, Azeez Ishola¹ ¹Afe Babalola University

1-C-76 Patterns of APP fragments suggest that Alzheimer disease is the end-point of distinct processes in men and women *Paul Pennington*¹, Jennifer Nyarko¹, Darrell Mousseau¹

¹University of Saskatchewan

1-C-77 Distribution of Somatostatin and Somatostatin Receptors in Human brain microvascular endothelial cell in β-amyloid induced Toxicity *Seungil Paik*¹, Rishi Somvanshi¹, Ujendra Kumar¹

¹UBC Pharmaceutical Sciences

1-C-78 Role of Thioredoxin Reductase in regulation of autophagic cell death in Neurons. *Nagakannan Pandian*¹, Eftekhar Eftekharpour¹ ¹University of Manitoba

1-C-79 Eye movements reveal sexually dimorphic deficits in children with fetal alcohol spectrum disorder *Angelina Paolozza*¹, Rebecca Munn¹, Douglas Munoz¹, James Revnolds¹

¹Queen's University

1-C-80 Expression of a novel delta-opioid receptor isoform in human brain and a neuroblastoma cell line *Marjo Piltonen*¹, Anne-Julie Chabot-Doré¹, Marc Parisien¹, Luda Diatchenko¹

¹McGill University

1-C-81 The effect of ASD-associated mutations on neuronal development

*Kathryn Post*¹, Kurt Haas¹

¹University of British Columbia

1-C-82 DIFFERENTIAL EXPRESSION OF CONNEXINS IN A MOUSE MODEL OF FETAL ALCOHOL SYNDROME

*Meera Ramani*¹, Meera Ramani¹, Shanthini Mylvaganam¹, Michal KrawczyK², James Brien³, James Reynolds³, Bhushan Kapur⁴, Michael Poulter⁵, Georg Zoidl⁶, Peter Carlen¹

¹Toronto Western Research Institute, ²Toronto Western Research Institute, ³Queen's University, ⁴The Hospital for Sick Children, ⁵Western University, ⁶York University

1-C-83 Delayed inhibition of VEGF signaling after stroke attenuates blood brain barrier breakdown and improves functional recovery in a co-morbidity dependent manner *Patrick Pagean*¹ Kelly Tanpast¹ Kim Gerrau¹ Sammy Naupl¹ Pa

*Patrick Reeson*¹, Kelly Tennant¹, Kim Gerrow¹, Sammy Novak¹, Patrick Nahirney¹, Craig Brown¹

¹University of Victoria

1-C-84 Leucine-rich repeat kinase 2 knockout prevents behavioral deficits and promotes survival in Parkinson's disease model

*Christopher Rudyk*¹, Darcy Litteljohn¹, Zach Dwyer¹, Shawn Hayley¹ ¹Carleton University

POSTER SESSION 1 - MONDAY, MAY 25, 2015

1-C-85 Investigation of Pannexin 1 in the response of developing neurons to stroke

Juan Sánchez-Arias¹, Leigh Wicki-Stordeur¹, Esther Carmona-Wagner¹, Jagroop Dhaliwal², Adrianna Gunton¹, Michelle Kim¹, Andrew Boyce¹, Valery Shestopalov³, Diane Lagace², Leigh Swayne¹

¹University of Victoria, ²University of Ottawa, ³University of Miami

1-C-86 Generation of a novel mouse model of the neuronal isoform Kif1a/25b to study hereditary sensory & autonomic neuropathy type II

Jean-Francois Schmouth¹, Daniel Rochefort¹, Pascale Hince¹, Jeffrey Mogil¹, Patrick Dion¹, Guy Rouleau¹

¹McGill University

1-C-87 Concurrent assessment of forelimb function and mesoscopic cortical networks in mouse stroke models *Gergely Silasi*¹, Matthieu Vanni¹, Federico Bolanos¹, Jamie Boyd¹, Stephen Scott², Timothy Murphy¹

¹UBC, ²Queen's University

1-C-88 Transcription regulation of the human USP25 gene *Beibei Song*¹, Odysseus Zis¹, Fang Cai¹, Weihong Song¹ ¹UBC

1-C-89 VEGF protects against blood brain barrier disruption, dendritic spine loss and spatial memory impairment in an experimental model of diabetes

Stephanie Taylor¹, Dustin Trudeau¹, Brendan Arnold¹, Joshua Wang¹, Kim Gerrow¹, Kieran Summerfeldt¹, Andrew Holmes¹, Akram Zamini¹, Patricia Brocardo¹

¹University of Victoria

1-C-90 Transcriptomic approach to cellular composition changes in psychiatric disorders

*Lilah Toker*¹, Ogan Mancarci¹, Shreejoy Tripathy¹, Paul Pavlidis¹ ¹University of British Columbia

1-C-91 Effect of chronic minocycline treatment on restoring

dendritic atrophy in a Murine Fragile X Model *Aaron Truesdell*¹, Christine Chiu¹, Jason Chiu¹, Mariana Vetrici¹, Suk-yu Yau¹, Brian Christie¹

¹University of Victoria

1-C-92 Amyloid-β oligomers induce autophagy and inhibit axonal transport of autophagosomes in cultured hippocampal neurons

Kresimir Ukalovic¹, Michael Silverman¹

¹Simon Fraser University

1-C-93 The Unfolded Protein Response and cholesterol biosynthesis link Luman/CREB3 to regenerative axon growth in sensory neurons

Zhengxin Ying¹, Vikram Misra¹, Valerie Verge¹

¹University of Saskatchewan

1-C-94 Altered precision of Purkinje cell firing in a mouse model of spinocerebellar ataxia type 6 *Sriram Jayabal*¹, Lovisa Ljungberg¹, Alanna Watt¹

¹McGill University

1-C-95 Development of a primate model of Alzheimer's Disease II: Characterization of behavioural phenotype

*Robert Wither*¹, Susan Boehnke¹, Ann Lablans¹, Rob Marino¹, Brian Coe¹, Fernanda De Felice², Douglas Munoz¹

¹Queen's University, ²Federal university of Rio de Janeiro

1-C-96 Adaptation of a naturalistic motor learning task to assess behaviour and drug interventions in the YAC128 model of Huntington's disease

*Cameron Woodard*¹, Federico Bolaños¹, Tim Murphy¹, Lynn Raymond¹ ¹University of British Columbia

1-C-97 Effects of exercise on the basal ganglia morphology in schizophrenia.

Melissa Woodward¹, Donna Lang¹

¹University of British Columbia

1-C-98 Synaptic dysfunction by an Alzheimer-associated mutation A713T in the APP gene *Qin Xu*¹, Weihong Song¹

¹University of British Columbia

1-C-99 Using induced pluripotent stem cell-derived neurons to uncover effects of autism-linked mutations on neuronal function. *Kirill Zaslavsky*¹, Wenbo Zhang², Eric Deneault², Tadeo Thompson², Alina Piekna², Peter Joel Ross², Asli Dedeagac², Wei Wei², Peter Pasceri², Michael Salter², Stephen Scherer², James Ellis²

¹University of Toronto, ²Hospital for Sick Children

1-C-100 Electrophysiological investigation in neurons derived from human induced pluripotent stem cells with deletions of PTCHD1 locus

*Wenbo Zhang*¹, P. Joel Ross¹, Kirill Zaslavsky¹, Wei Wei¹, Alina Piekna¹, Tadeo Thompson¹, Stephen Scherer¹, James Ellis¹, Michael Salter¹ ¹The Hospital for Sick Children

D - Sensory and Motor Systems

1-D-101 Time course 'dose' of cross-education of strength after handgrip training

*Trevor Barss*¹, Taryn Klarner¹, Yao Sun¹, E Paul Zehr¹

¹University of Victoria

1-D-102 Repetitive transcranial direct current stimulation (tDCS) of the primary visual cortex induces long-lasting enhancement of contrast perception *Stephan Brandt*¹, Janina Behrends¹, Antje Kraft¹, Manuel Olma¹

¹Charité University Hospital

1-D-103 Cell-type specific reorganization of inhibitory circuits during motor learning *Simon Chen*¹

¹University of California, San Diego

1-D-104 Cortical substrates for allocentric vs. egocentric representation of remembered saccade targets in the human *Ying Chen*¹, John Crawford¹ ¹York University

1-D-105 Wii Balance Board and electromyography to assess postural adjustment after perturbation

Yao Sun¹, Hilary Cullen¹, Brian Christie¹, E.Paul Zehr¹

¹University of Victoria

1-D-106 More than a feeling: Passive somatosensory priming facilitates processing of graspable objects

*Chelsea Ekstrand*¹, Eric Lorentz¹, Layla Gould¹, Marla Mickleborough¹, Ron Borowsky¹

¹University of Saskatchewan

1-D-107 Potentiation of phase II formalin responses in zinc transporter-3 (ZnT-3) knockout mice

*Churmy Fan*¹, Brendan McAllister¹, Richard Dyck¹, Tuan Trang¹

¹University of Calgary

1-D-108 Central and peripheral afferent processing of natural and artificial vestibular inputs

*Patrick Forbes*¹, Gunter Siegmund², Alfred Schouten³, Jean-Sébastien Blouin⁴

¹University of British Columbia/Delft University of Technology, ²MEA Forensic Engineers & Scientists, ³Delft University of Technology, ⁴University of British Columbia

1-D-109 CD11b+Ly6G- myeloid cells drive mechanical inflammatory pain hypersensitivity

*Nader Ghasemlou*¹, Nader Ghasemlou¹, Isaac Chiu², Sun Wook Hwang³, Jean-Pierre Julien⁴, Clifford Woolf³

¹Queen's University, ²Harvard Medical School, ³Boston Children's Hospital, ⁴Université Laval

1-D-110 Cholinergic receptors expression in the visual cortex following long-term enhancement of visual cortical activity by cholinergic stimulation

*Marianne Groleau*¹, Mira Chamoun¹, Menakshi Bhat¹, Frédéric Huppé-Gourgues¹, Réjean Couture¹, Elvire Vaucher¹

¹Universite de Montreal

1-D-111 A computational approach to decipher the network topology of the dorsal root ganglion

*Nicolas Doyon*¹, Simon Hardy¹, Patrick Desrosiers¹, Yves De Koninck¹ ¹Université Laval

1-D-112 Primary motor cortical neurons reflect vector sum of ipsilateral and contralateral feedback modulation *Ethan Heming*¹, Stephen Scott¹

¹Queen's University

1-D-113 Prediction of future sensory states requires self-generated motor commands *Robert Hermosillo*¹, Paul van Donkelaar¹

¹University of British Columbia

1-D-114 Multisensory integration in human pupil orienting response

Jeff Huang¹, Chin-An Wang¹, Douglas Munoz¹

¹Queen's University

1-D-115 Reversible inactivation mapping of cortical sites required for voluntary forelimb movements in VGAT-ChR2 transgenic mice.

Raghu Ram Katreddi¹, Greg Silasi¹, Jamie Boyd¹, Jeff LeDue¹, Stephen Scott², Timothy Murphy¹

1-D-116 From chaos to control: Using oscillations to harness neuronal networks

*Eric Kuebler*¹, Jean-Philippe Thivierge¹

¹University of Ottawa

1-D-117 A Computational Model of Updating and Integration of Remembered Visual Stimuli across Eye Movements *Yalda Mohsenzadeh*¹, Douglas Crawford¹

¹York University

1-D-118 Phosphatase 2B mediates NMDAR plasticity and metaplasticity in early odor preference learning in rats *Bandhan Mukherjee*¹, Bandhan Mukherjee², Qi Yuan²

¹Memorial University, ²Memorial University of Newfoundland

1-D-119 Lack of adenylate cyclase 1 (AC1) affect corticospinal tract development and locomotor recovery after spinal cord injury

Hanane Nait Taleb Ali¹, Hanane Nait Taleb Ali², Pierre marie Morel³, Sophie Scotto-Lomassese⁴, patricia Gaspar⁵, Isabelle Dusart⁶, Mohamed bennis⁷

¹Faculté des Sciences Semlalia, ²faculté des sciences Semlalia, ³UPMC, Univ paris06, ⁴Inserm, UMR-S839, Inserm, UMR-S839, ⁵Inserm, UMR-S839, Institut duFeraMoulin, ⁶UPMC, UnivParis06, ⁷Lab Pharmacology,Neurobiology&Behavior(URAC-37), Faculté des Sciences

1-D-120 Spatiotemporal profiles of receptive fields of area 21a neurons in the cat

Bruno Oliveira Ferreira de Souza¹, Christian Casanova¹ ¹Universite de Montreal

1-D-121 Precise coding of ankle rotation by lower-limb muscle spindle afferents

Ryan Peters¹, Brian Dalton², Jean-Sébastien Blouin¹, Tim Inglis¹ ¹University of British Columbia, ²University of Oregon

1-D-122 Dopamine exerts concentration-dependent bidirectional modulation and evokes state-dependent rhythmicity in motor networks of the neonatal mouse spinal cord *Simon Sharples*¹, Patrick Whelan²

¹Hotchkiss Brain Institute, University of Calgary, ²University of Calgary

1-D-123 Plasticity of Binocularity and Visual Acuity are Differentially Limited by Nogo Receptor *Céleste-Élise Stephany*¹, Leanne Chan², Sherveen Parivash¹, Hilary Dorton¹, Mariel Piechowicz³, ShenFeng Qiu³, Aaron McGee¹

¹The Saban Research Institute, Children's Hospital Los Angeles, ²Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, ³University of Arizona, College of Medicine

1-D-124 Wide field calcium imaging of resting state activity in mice reveals both motif level, as well larger sensory clusters *Matthieu Vanni*¹, Allen Chan¹, Dongsheng Xiao¹, Gergely Silasi¹, Jeffrey Ledue¹, Mostafa Moshevand¹, Tim Murphy¹

¹University of British Columbia

1-D-125 Decoding the encoding strategy of primary sensory neurons by in vivo calcium imaging

*Feng Wang*¹, Erik Bélanger¹, Sylvain Côté¹, Daniel Côté¹, Yves De Koninck¹

¹Centre de Recherche de L'Institut Universitare en Sante Mentale de Quebec

¹University of British Columbia, ²Queen's University

POSTER SESSION 1 - MONDAY, MAY 25, 2015

1-D-126 Unbiased estimate of the spinal cord neuronal population involved in non-human primate motor control *Nolan Wilson*¹, Stephen Scott¹

¹Queen's University

1-D-127 Dissociation of parietal cortex contributions to obstacle memory in walking cats

*Carmen Wong*¹, Keir Pearson², Stephen Lomber¹ ¹The University of Western Ontario, ²University of Alberta

1-D-128 Imbalance of Excitation and Inhibition at Threshold Level In the Auditory Cortex

*Yan Zhao*², Zizhen Zhang¹, Xiuping Liu¹, Colin Xiong¹, Jun Yan¹ ¹University of Calgary, ²Southern Medical University

E - Homeostatic and Neuroendocrine Systems

1-E-129 Effects of ANA-12, a selective tyrosine-related kinase B (TrkB) antagonist, on anxiety, exploration, locomotion and fear avoidance learning following a repeated stress regimen in male Wistar rats

Idu Azogu¹, Helene Plamondon¹

¹University of Ottawa

1-E-130 Dopamine acts directly on arcuate nucleus neurons to alter expression of neuropeptide genes Samantha Lee¹, Lauren Shute¹, Mark Fry¹

¹University of Manitoba

1-E-131 Intra-VTA insulin decreases nucleus accumbens dopamine release in vivo

*Lindsay Naef*¹, Jeff Huang², Calvin Lee², Dmitry Mebel², Stephanie Borgland¹

¹University of Calgary, ²University of British Columbia

1-E-132 Alteration to one carbon metabolism may underlie glutathione deficiencies in the rat dentate gyrus after prenatal ethanol exposure

Scott Sawchuk¹, Anna Patten¹, Brian Christie¹

¹University of Victoria

1-E-133 4(5)-methylimidazole, found in caramel colouring, alters gene expression in arcuate nucleus neurons. *Lauren Shute*¹, Samantha Lee¹, Geemitha Ratnayake², Thor Halldorson¹, Lianna Bestvater¹, Gregg Tomy¹, Mark Fry¹ ¹University of Manitoba, ²Acadia Junior High School

F - Cognition and Behavior

1-F-134 Circuit principles of neuronal processing in larval Drosophila melanogaster thermotaxis

Bruno Afonso¹, Mason Klein², Matthew Berck², Ivan Ilarderet³, Marc Gershow⁴, James Truman⁵, Simon Sprecher³, Albert Cardona⁵, Aravi Samuel², Marta Zlatic⁵

¹HHMI Janelia Research Center / Harvard University, ²Harvard University, ³University of Fribourg, ⁴New York University, ⁵HHMI Janelia Research Center

1-F-135 Cognitive impairments in a touchscreen-based visual discrimination and reversal learning procedure in a rat model of absence epilepsy

*Lei An*¹, Wendie Marks¹, Stuart Cain², Terrance Snutch², John Howland¹ ¹University of Saskatchewan, ²University of British Columbia

1-F-136 Training experience affects the selectivity of neurons and the pattern of noise correlations in primate lateral prefrontal cortex

*Theda Backen*¹, Stefan Treue², Julio Martinez-Trujillo³ ¹McGill University, ²German Primate Center, ³University of Western Ontario

1-F-137 Pattern separation deficits in a patient with bilateral dentate gyrus lesions

Stevenson Baker¹, R. Shayna Rosenbaum¹

¹York University

1-F-138 Simulation of embodied and the large-scale neuronal systems with the iqr software *Ulvsses Bernardet*¹

¹Simon Fraser University

1-F-139 The Word on the Beat: Behaviour and Brain Interactions of Reading and Rhythm

*Layla Gould*¹, Eric Lorentz¹, Chelsea Ekstrand¹, Tessa McKibben¹, Marla Mickleborough¹, Ron Borowsky¹

¹University of Saskatchewan

1-F-140 The effect of fendiline on cocaine self-administration and reinstatement of cocaine-seeking behaviour in the rat. *Erin Orr*², Jonathan Cunningham³, Barbara Lothian², Jennifer Morgen², Karen Brebner²

¹St Francis Xavier University, ²St. Francis Xavier University, ³University of British Columbia

1-F-141 Younger age of onset of cannabis use is associated with thalamic dysconnectivity in youth at clinical high risk of psychosis

*Lisa Buchy*¹, Tyrone Cannon², Alan Anticevic², Kristina Lyngberg¹, Kristin Cadenhead³, Barbara Cornblatt⁴, Thomas McGlashan², Diana Perkins⁵, Larry Seidman⁶, Ming Tsuang³, Elaine Walker⁷, Scott Woods², Carrie Bearden⁸, Daniel Mathalon⁹

¹University of Calgary, ²Yale University, ³UCSD, ⁴Zucker Hillside Hospital, ⁵University of North Carolina, ⁶Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, ⁷Emory University, ⁸UCLA, ⁹UCSF

1-F-142 A novel Presenilin 1 mutation causes Alzheimer's Disease

Fang Cai¹, Shuting Zhang¹, Weihong Song¹ ¹UBC

1-F-143 Effect of T-type calcium channel blockade on the induction and reinstatement of morphine-induced conditioned place preference

Jonathan Cunningham¹, Carine Dias¹, Terry Snutch¹, Anthony Phillips¹ ¹University of British Columbia 1-F-144 Knowledge of haptic feedback availability does not influence size information supporting pantomime grasping *Shirin Davarpanah Jazi*¹, Stephanie Hosang¹, Matthew Heath¹

¹University of Western Ontario

1-F-145 Functional interaction between medial prefrontal cortex and dorsomedial striatum is necessary for odour memory span in rats: role of GluN2B-containing NMDA receptors *Don Davies*¹, Quentin Greba¹, Jantz Selk¹, Jillian Catton¹, John Howland¹

¹University of Saskatchewan

1-F-146 Moxifloxacin Induced Psychosis: A Case Report Study Arman Fesharaki¹

¹SUNY Downstate Medical Center

1-F-147 Approach and Avoidance Processing: Investigating a Rostrocaudal Gradient in the Nucleus Accumbens Core *Laurie Hamel*¹, Anett Schumacher¹, Rutsuko Ito¹

¹University of Toronto

1-F-148 Impoverished Descriptions of Familiar Routes in Three Cases of Medial Temporal Lobe/Hippocampal Amnesia *Katherine Herdman*¹, Navona Calarco¹, Morris Moscovitch², Marnie Hirshhorn³, R Shayna Rosenbaum⁴

¹York University, ²University of Toronto; Baycrest, ³University of Toronto, ⁴York University; Baycrest

1-F-149 Decoding Phenomenal Experience in Vegetative State Patients

*Austin Horn*¹, Lorina Naci¹, Charles Weijer¹, Adrian Owen¹ ¹Western University

1-F-150 Does place field repetition impair spatial learning? *Bryan Jenkins*¹, Roddy Grieves¹, Bryan Jenkins¹, Emma Wood¹, Paul Dudchenko²

¹University of Edinburgh, ²University of Stirling

1-F-151 Differential Effects of Dopamine and Selective Dopamine Agonists on Spatial Working Memory, Attention, Learning and Reaction Time in Healthy Controls *Robert Marino*¹, Alenka Bullen¹, Ron Levy¹

¹Queen's University

1-F-152 Increased spontaneous somatic-patterned cortical activity in a mouse model of depression *Alexander McGirr*¹, Allen Chan¹, Yicheng Xie¹, Jeffrey LeDue¹, Diana

Lim¹, Pumin Wang¹, Timothy Murphy¹

¹University of British Columbia

1-F-153 Cadherin adhesion complexes and cocaine-mediated synaptic plasticity

Andrea Globa¹, Fergil Mills¹, Catherine Cowan¹, Shuai Liu², Stephanie Borgland¹, Anthony Phillips¹, Shernaz Bamji¹

¹University of British Columbia, ²University of Calgary

1-F-154 Synaptic Plasticity and Reversal Learning are Impaired following B-catenin Stabilization in Hippocampal Neurons

*Fergil Mills*¹, Thomas Bartlett¹, Lasse Dissing-Olesen¹, Marta Wisniewska¹, Jacek Kuznicki¹, Brian Macvicar¹, Yu Tian Wang¹, Shernaz Bamji¹

¹University of British Columbia

1-F-155 Disrupted docosahexaenoic acid metabolism in carriers of apolipoprotein E epsilon 4 allele: is there a link with the risk of developing cognitive decline? *Melanie Plourde*¹

¹Université de Sherbrooke

1-F-156 Suppression of simple visual hallucinations from occipital stroke using TMS Sara Rafique¹, John Richards², Jennifer Steeves¹ ¹York University, ²University of California, Davis, Medical Center

1-F-157 Navigational strategies in young and older adult Inuit hunters

Devin Sodums¹ ¹McGill University

1-F-158 Different measures of decisions yield distinct information: Explicit and implicit measures reveal independent biases during economic decision making in a reaching task *Nathan Wispinski*¹, Christopher Madan², Craig Chapman³

¹University of British Columbia, ²Boston College, ³University of Alberta

1-F-159 The role of parvalbumin-positive interneurons in memory consolidation

*Frances Xia*¹, Blake Richards², Sheena Josselyn¹, Kaori Takehara-Nishiuchi², Paul Frankland¹

¹Hospital for Sick Children, ²University of Toronto

1-F-160 Prenatal Marginal Vitamin A Deficiency Facilitates Alzheimer's Disease Pathogenesis

*Jiaying Zeng*¹, Qian Chen¹, Zhen Fan¹, Li Chen¹, Tingyu Li¹, Weihong Song²

¹University of British Columbia, ²Children's Hospital of Chongqing Medical University

G - Novel Methods and Technology Development

1-G-161 Expanding the toolbox of genetically encoded voltage indicators

Ahmed Abdelfattah¹, Samouil Farhi², Yongxin Zhao¹, Daan Brinks², Peng Zou², Araya Ruangkittisakul¹, Klaus Ballanyi¹, Adam Cohen², Robert Campbell¹

¹University of Alberta, ²Harvard University

1-G-162 RNA-Lipid Nanoparticles: A Robust and Potent Tool for Gene Knockdown and Expression in Primary Neurons

*Aysha Ansari*¹, David Zwaenepoel¹, Adam White², Colin Walsh¹, Anitha Thomas¹, Timothy Leaver¹, Andre Wild¹, Yuping Li², Yu Tian Wang², James Taylor¹, Euan Ramsay¹, Carl Hansen², Pieter Cullis²

¹Precision NanoSystems Inc., ²University of British Columbia

1-G-163 Epidural fiber optic implant for spinal optogenetics in freely behaving animals

*Robert Bonin*¹, Feng Wang¹, Mireille Desrochers-Couture¹, Yves De Koninck¹

¹Institut universitaire en santé mentale de Québec

1-G-164 Optical Guidance for Deep Brain Stimulation Electrode Placement in the Treatment of Parkinson?s Disease *DePaoli Damon*¹, Laurent Goetz¹, Martin Parent¹, Leo Cantin¹, Michel Prudhomme¹, Tigran Galstian¹, Younnes Messaddeq¹, Daniel Côté¹ ¹University of Laval

POSTER SESSION 1 - MONDAY, MAY 25, 2015

1-G-165 Modeling by finite element method of ion concentration fluctuations in dendritic spines and the extracellular space *Ibrahima Dione*¹, Nicolas Doyon¹, Yves De Koninck¹

¹Universite Laval

1-G-166 Label-free microscopy to infer nerve fibers morphology and myelination in structurally complex samples *Alicja Gasecka*¹, Steve Begin¹, Daniel Cote¹

¹Quebec Mental Health Institute Research Centre

1-G-167 AAV-compatible MiniPromoters Target Specific Cell Types of the Central Nervous System

Andrea Korecki¹, Charles de Leeuw¹, Siu Ling Lam¹, Garrett Berry², Jack Hickmott¹, Tess Lengyell¹, Russell Bonaguro¹, Lisa Borretta¹, Alice Chou¹, Olga Kaspieva¹, Stephanie Laprise¹, Simone McInerny¹, Elodie Portales-Casamar¹, Magdalena Swanson-Newman¹,

¹University of British Columbia,²University of North Carolina, ³Simon Fraser University

1-G-168 Hyperspectral imaging to track simultaneously the spatial dynamics of multiple subtypes of individual proteins on live neurons

*Simon Labrecque*¹, Jean-Philippe Sylvestre², Stéphane Marcet², Francesca Mangiarini², Marc Verhaegen², Sebastien Blais-Ouellette³, Paul De Koninck¹

¹Universite Laval, ²Photon Etc., ³Photon Etc.

1-G-169 Development of a novel tissue engineered model of the cerebrovasculature

Jerome Robert¹, Sophie Stukas¹, Cheryl Wellington¹ ¹UBC

1-G-170 Two-photon optogenetics with near-infrared light-activated cyclases for studying the role of cAMP and cGMP in living neurons

Megan Valencia¹, Thomas Luyben¹, Kenichi Okamoto¹

¹University of Toronto

1-G-171 Point source networks: correlation between local firing properties and regional cortical imaging in mouse cortex *Dongsheng Xiao*¹, Matthieu Vanni¹, Allen Chan¹, Timothy Murphy¹

¹Brain Research Centre, The University of British Columbia

1-G-172 High yield and purity of primary astrocyte and microglia cultures from embryonic mouse and rat cerebral cortex

Adam Yu¹, Sarah Neil¹, Jacqueline Quandt¹

¹University of British Columbia

IBRO – International Brain Research Organisation

1-IBRO-173 Peer rescue of autism-related behavior after prenatal exposure to valproic acid

Marcos Campolongo¹, Nadia kazlauskas¹, Amaicha Depino¹

¹Institute of Phisiology, Molecular Biology and Neuroscience (IFIBYNE)

1-IBRO-174 Proteolytic processing of CXCL12 transforms CXCL12 into a death factor for neural stem cells *Taís Adelita*¹, Roberta Stilhano¹, San Han¹, Giselle Justo¹, Marimelia

Tais Adelita', Koberta Stilhano', San Han', Giselle Justo', Marimelia Porcionatto¹

¹UNIFESP

1-IBRO-175 Acute stress increases FMRP levels in hippocampus and promotes Akt-mTOR and MAPK1/2 pathways activation in rats

*Felipe Aguayo*¹, Paulina Rojas², Aníbal Pacheco¹, Gonzalo Gracía-Rojo¹, Mauricio Muñoz-Llanoz¹, Alexandra García-Pérez¹, Ruth Márquez¹, Jenny Fiedler¹

¹Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, ²Universidad Andrés Bello

1-IBRO-176 Cognitive studies and a direct cell reprogramming protocol for the aging rat brain

*Micaela López-León*¹, Gustavo Morel¹, Maia Uriarte¹, Marianne Lehmann¹, Rodolfo Goya¹

¹National University of La Plata

1-IBRO-177 Relative Expression of Odorant Binding Proteins in the Forest Tsetse fly Species Glossina brevipalpis *Mary Murithi*¹, Rosaline Macharia², Esther Magiri¹, Steven Nyanjom¹, Daniel Masiqa²

¹Jomo Kenyatta University of Agriculture and Technology, ²International Center Of Insect Physiology and Ecology

1-IBRO-178 Impaired autophagy associated with glucose deprivation induces neuronal death through subsequent autophagy activation.

*Cristian Geronimo-Olvera*¹, Teresa Montiel¹, Lourdes Massieu¹ ¹Universidad Nacional Autonoma de Mexico

1-IBRO-179 Evidence for a decrease of pyramidal cells dendrites in neonatal thalamic lesioned rat?s prefrontal cortex: implication in Schizophrenia

Zakaria Ouhaz¹, Saadia Ba-M'Hamed¹, Mohamed Bennis¹

¹Université Cadi Ayyad, Faculté des Sciences Semlalia

1-IBRO-180 Role of IL-10 in macrophage polarization and recovery after peripheral nerve injury

*Bruno Mietto*¹, Antje Kroner², Elizabeth Girolami², Ji Zhang³, Samuel David²

¹Federal University of Rio de Janeiro, ²Montreal General Hospital, ³Alan Edwards Centre for Research on Pain

A – Development

2-A-1 TALEN- and CRISPR/Cas9-mediated disruption of the robo3 gene in Xenopus tropicalis Anteneh Argaw¹, Dietmar Schmucker¹ ¹VIB

2-A-2 Survival and maturation of the developmentally-born cell population in the rat dentate gyrus.

Shaina Cahill¹, Ru Qi Yu¹, Dylan Green¹, Jason Snyder¹ ¹University of British Columbia

2-A-3 Role of Cux factors in cerebellar development Emily Capaldo¹, Angelo Iulianella¹

¹Dalhousie University

2-A-4 Prenatal Alcohol Exposure Alters Expression of Glucocorticoid and Mineralocorticoid Receptor Levels in the Placenta and Fetal Brain at Gestational Day 21 Melissa Chiu¹, Ni Lan¹, Joanne Weinberg¹ ¹University of British Columbia

2-A-5 Inflammation dysregulates neural circuit formation in vivo via microglial activation and IL-1ß Nasr Farooqi¹, Edward Ruthazer¹ ¹Montreal Neurological Institute

2-A-6 The requirement for the Rb Family during Adult Neurogenesis Bensun Fong¹, Renaud Vandenbosch², Devon Svoboda¹, Alysen Clark¹, David Park¹, Ruth Slack¹

¹University of Ottawa, ²University of Liege

2-A-7 Examining the Role of DIXDC1 in Neural Connectivity and Autism Spectrum Disorders

Vickie Kwan¹, Susan Walker², Stephen Scherer², Karun Singh¹ ¹McMaster University, ²The Hospital for Sick Children

2-A-8 Inter-neuronal interaction defines topographic synaptic innervation in C. elegans Kota Mizumoto¹

¹University of British Columbia

2-A-9 Regulation of synaptic connectivity by a novel FMR1-TAO2 pathway and its disruption in autism spectrum disorders. Nadeem Murtaza¹, Melanie Richter², Pritha Paul¹, Vickie Kwan¹, Emanuela Pasciuto³, Susan Walker⁴, Stephen Scherer⁴, Claudia Bagni³, Froylan Calderon de Anda², Karun Singh¹

¹Mcmaster University/Stem Cell and Cancer Research Center, ²University of Hamburg/Center for Molecular Neurobiology Hamburg, ³University of Leuven/Flanders Institute for Biotechnology, ⁴University of Toronto/Hospital for Sick Children

2-A-10 A FASD Mouse Model: Biochemically Mimicking Alcohol Exposure using Gsc promoter driven Cyp26A1 cDNA. Berardino Petrelli¹, Arzu Ozturk¹, Molly Pind¹, Abraham Fainsod¹,

Geoff Hicks¹

¹University of Manitoba

2-A-11 Collaborative regulation of Prostaglandin E2 and Wnt signalling pathways in neuroectodermal stem cells: implication in autism

*Christine Wong*¹, Eizaaz Ahmad¹, Hongyan Li¹, Dorota Crawford¹ ¹York University

2-A-12 The ASD-associated gene Glyoxalase1 integrates the fetal-maternal metabolism of the diabetes risk factor methylglyoxal to regulate embryonic neurogenesis Guang Yang¹, Freda Miller¹, David Kaplan¹

¹The Hospital for Sick Children

2-A-174 Effects of prenatal alcohol exposure and early life stress on the immune response to challenge: Profiling cytokine expression patterns in multiple compartments David Mak¹, Tamara Bodnar¹, Joanne Weinberg¹

¹The University of British Columbia

B - Neural Excitability, Synapses, and Glia: Cellular Mechanisms

2-B-13 Modulation of synaptic fidelity by post-synaptic Pannexin-1

Jennifer Bialecki¹, Nicholas Weilinger¹, Matthew Hill¹, Roger Thompson¹

¹Hotchkiss Brain Institute

2-B-14 Two-photon FRET and optogenetics for studying post-synaptic cGMP during plasticity Jelena Borovac¹, Tyler Luyben¹, Kenichi Okamoto¹

¹University of Toronto

2-B-15 ATP-evoked internalization of Pannexin 1 channels Andrew Boyce¹, Ross Prager¹, Leigh Wicki-Stordeur¹, Michelle Kim¹, Leigh Anne Swavne¹

¹University of Victoria

2-B-16 Nemo kinase is a transcriptional target of the BMP signaling cascade in motorneurons *Mario Calderon*¹, Kimberly Young¹, Edward Liao¹, Pejmun Haghighi¹ ¹McGill University

2-B-17 Distinct functional roles for P/O- and N-types voltage-gated calcium channels in neurotransmitter release at mossy fiber to CA3 pyramidal cell synapses

Simon Chamberland¹, Alesva Evstratova¹, Katalin Tóth¹ ¹Universite Laval

2-B-18 Pathway specific depolarization-induced suppression of inhibition in hypothalamic parvocellular neuroendocrine neurons

Phillip Colmers¹, Jaideep Bains¹

¹University of Calgary

2-B-19 Absence of MDGA1 Enhances Inhibitory Drive and Confers Resistance to Increased Excitation in Mouse Hippocampus

Steven Connor¹, Ina Ammendrup-Johnsen¹, Parisa Karimi Tari¹, Tohru Yamamoto², Yu Tian Wang¹, Ann Marie Craig¹

¹University of British Columbia, ²Kagawa University

2-B-20 Investigating the regulation and function of mitochondrial remodelling in rat cortical astrocytes

Samineh Deheshi¹, Susu Fan¹, Bahram Dabiri¹, Michelle Tsang¹, Sarah Warda¹, Leili Atashkari¹, Yana Saranchova¹, Gordon Rintoul¹

¹Simon Fraser University

2-B-21 Inducible Deletion of Myelin Regulatory Factor is a Cell Selective Mechanism to Impair Oligodendrocyte Remyelination Greg Duncan¹, Jason Plemel², Jie Liu¹, Ryan Hirata¹, Yasmin Chaeichi¹, Matan Berson¹, Wolfram Tetzlaff¹

¹ICORD/UBC, ²Hotchkiss Brain Institute, University of Calagary

2-B-22 Reduced Hyperpolarization-Activated Current Contributes to an Enhanced Intrinsic Excitability in Hippocampal Neurons from PrP-/- Mice

Jing Fan¹, Patrick Stemkowski¹, Stefanie Black¹, Ivana Souza¹, Gerald Zamponi¹

¹University of Calgary

2-B-23 Kainate receptor mediated regulation of chloride homeostasis

Danielle Garand¹, Vivek Mahadevan¹, Melanie Woodin¹

¹University of Toronto

2-B-24 Selective viral manipulation of neostriatal matrix compartment

*Marianela Garcia-Munoz*¹, Violeta Lopez-Huerta¹, Yoko Nakano¹, Michael Lazarus², Gordon Arbuthnott¹

¹Okinawa Institute of Science and Technology Graduate University, ²University of Tsukuba

2-B-25 Modulation of GABAA receptors by a novel associated protein

Yuan Ge¹, Yunhee Kang¹, Leonard Foster¹, Ann Marie Craig¹ ¹University of British Columbia

2-B-26 Age-Dependent Odor Preference: Neuronal Properties and Responsiveness to Norepinephrine in the Anterior Piriform Cortex of the mouse

Abhinaba Ghosh¹, Nicole Purchase¹, Xihua Chen¹, Qi Yuan¹ ¹Memorial University Of Newfoundland

2-B-27 Semaphorin 5A in Synapse Pruning and Autism **Spectrum Disorders**

Rachel Gomm Kolisko¹, Wei Xiao¹, Riki Dingwall¹, D. Blair Jovellar¹, Shernaz Bamji¹, Timothy O'Connor¹

¹University of British Columbia

2-B-28 Regulation of the transient receptor potential vanilloid 1(TRPV1) channel by heat shock protein 70 (HSC70) *Mircea Iftinca*¹, Robyn Flynn¹, Christophe Altier¹

¹University of Calgary

2-B-29 Nitric oxide modulation of phosphodiesterase activity and cAMP levels in astrocytes **Rebecca Ko¹**, Hyun Choi¹, Brian MacVicar¹ ¹University of British Columbia

2-B-30 Synaptic mechanisms gating the cortico-hippocampal information flow through activation of the CA1 disinhibitory circuit

Xiao Luo¹, Lisa Topolnik¹

¹Université Laval

2-B-31 Protein Tyrosine Phosphatase Alpha-mediated Akt activation is required for oligodendrocyte differentiation and mvelination

*Philip Ly*¹, Yuda Shih¹, Jing Wang¹, Catherine Pallen¹ ¹University of British Columbia

2-B-32 T-type-mediated calcium spikes in dendrites of CA3 pyramidal neurons couple to Kv4 channels and mGluR1 receptors Aqsa Malik¹, Brian MacVicar¹

¹University of British Columbia

2-B-33 Activity Dependent Changes to Resting Astrocyte Ca2+ Eslam Mehina¹, Grant Gordon¹

¹University of Calgary

2-B-34 Ultrastructural analysis of blood-brain barrier breakdown in the peri-infarct zone of young adult and aged mice Patrick Nahirney¹, Patrick Reeson¹, Craig Brown¹

¹University of Victoria

2-B-35 Sensory-evoked dendritic activity and somatic firing instruct morphogenesis in the awake brain Kaspar Podgorski¹, Serhiy Opushnyev¹, Kurt Haas¹

¹University of British Columbia

2-B-36 Thalamic modulation of the cortical slow oscillation Anastasiia Ozur¹, Sylvain Chauvette¹, Igor Timofeev¹ ¹Université Laval

2-B-37 Optogenetic quantification of glutamate clearance following synaptic release in health and disease *Matthew Parsons*¹, Matthieu Vanni¹, Timothy Murphy¹, Lynn Ravmond¹

¹University of British Columbia

2-B-38 Synaptic Plasticity in the Globus Pallidus Ian Prescott¹, Rob Marino¹, Ron Levy¹

¹Oueen's University

2-B-39 All-or-none axonal Ca2+ dynamics in recurrent circuits of the hippocampus Israeli Ran¹, Richard Tsien¹

¹NYU Neuroscience Institute

2-B-40 The cellular mechanisms of neuronal swelling underlying cytotoxic edema

*Ravi Rungta*¹, Hyun Choi¹, John Tyson¹, Agsa Malik¹, Lasse Dissing-Olesen¹, Paulo Lin¹, Stuart Cain¹, Pieter Cullis¹, Terrance Snutch¹, Brian MacVicar¹

¹University of British Columbia

2-B-41 The X-linked Intellectual Disability Gene, DHHC9, in Neurite Outgrowth and Synapse Formation

Jordan Shimell¹, D. Blair Jovellar¹, G. Stefano Brigidi¹, Shernaz Bamji¹ ¹University of British Columbia

2-B-42 Diacylglycerol and inositol triphosphate modulate a protein kinase C-dependent change in Aplysia bag cell neuron excitability

Raymond Sturgeon¹, Neil Magoski¹

¹Queen's University

2-B-43 Paradoxical excitation by primary afferent depolarization requires dual changes in GABAergic signalling and neuronal excitability

Petri Takkala¹, Yi Zhu², Steven Prescott³

¹University of Toronto, ²University of Pittsburgh, ³The Hospital for Sick Children

2-B-44 Modelling morphology and integration in developing dendrites

Lara Thompson¹

¹University of British Columbia

2-B-45 D-Serine influences retinotectal synapse maturation and axonal refinement in the developing visual system Marion Van Horn¹, Loredano Pollegioni², Edward Ruthazer¹

¹Montreal Neurological Institute, ²University of Insubria

2-B-46 Glycine-mediated fast inhibitory synaptic transmission in the hypothalamic paraventricular nucleus Vojtech Vavra¹

¹University of Calgary

2-B-47 Role of palmitoylation in NMDA receptor trafficking and function in corticostriatal co-culture Liang Wang¹, Rujun Kang¹, Lynn Raymond¹

¹University of British Columbia

2-B-48 A new signaling modality for NMDA receptors in excitotoxic cell death and ischemic stroke

Nicholas Weilinger¹, Brooke Rakai¹, Alexander Lohman¹, Jennifer Bialecki¹, Nathan Ikuta², Lucas Scott¹, Michael Colicos¹, Campbell Teskey¹, Ian Winship², Roger Thompson¹

¹Hotchkiss Brain Institute, ²Neurochemical Research Unit / University of Alberta

2-B-49 Class 5 semaphorins mediate synaptic elimination and activity-dependent plasticity in rodent hippocampal neurons Wei Xiao¹, Rachel Gomm Kolisko¹, Riki Dingwall¹, Blair Jovellar¹, Shernaz Bamji¹, Tim O'Connor¹

¹University of British Columbia

2-B-50 Persistent firing and its transition to ictal-like response in hippocampal CA1 pyramidal neurons Motoharu Yoshida¹, Beate Knauer¹

¹Ruhr University Bochum

2-B-51 Regulation of endosome fusion by Cav2.2 Fangxiong Zhang¹, Gerald Zamponi¹ ¹University of Calgary

C - Disorders of the Nervous System

2-C-52 Glutamatergic transmission is enhanced in the amygdala in Experimental Autoimmune Encephalomyelitis Shaona Acharjee¹, Adrienne Benediktsson², Quentin Pittman¹

¹University of Calgary, ²Mount Royal University

2-C-53 PDGFRa-positive progenitor cells form myelinating oligodendrocytes and Schwann cells following contusion spinal cord injury

Peggy Assinck¹, Greg Duncan², Jason Plemel³, Michael Lee², Jie Liu², Dwight Bergles⁴, Wolfram Tetzlaff²

¹ICORD/UBC, ²UBC/ICORD, ³University of Calgary, ⁴Johns Hopkins University School of Medicine

2-C-54 Neuronal sodium elevation and COX-2 activation in post-traumatic epileptogenesis in vitro Trevor Balena¹, Kevin Staley¹

¹Massachusetts General Hospital

2-C-55 Development of a primate model of Alzheimer?s Disease I. Characterization of molecular pathology Susan Boehnke¹, Leticia Forny-Germano², Robert Wither¹, Ann

Lablans¹, Brian Coe¹, Fernanda De Felice², Douglas Munoz¹

¹Queen's University, ²Federal University of Rio de Janeiro

2-C-56 Experimental traumatic brain injury: Bad to the bone? *Rhys Brady*¹, Sandy Shultz², Mujun Sun², Tania Romano¹, David Wright³, John Wark⁴, Terrence O'Brien¹, Brian Grills¹, Stuart McDonald¹

¹La Trobe University, ²The University of Melbourne, ³Florey Institute of Neuroscience and Mental Health, ⁴Royal Melbourne Hospital

2-C-57 High density lipoproteins benefit function and reduce inflammation in human brain microvascular endothelial cells. *Emily Button*¹, Jerome Robert¹, Sophie Stukas¹, Cheryl Wellington¹

¹University of British Columbia

2-C-58 Pregabalin Alters Cortical Spreading Depression and Synaptic Function in a Model of Familial Hemiplegic Migraine Type-1

Stuart Cain¹, Barry Bohnet¹, Andrew Yung¹, Huili Han¹, Piotr Kozlowski¹, Brian MacVicar¹, Terrance Snutch¹

¹University of British Columbia

2-C-59 A mouse model of SNCA multiplication Stefano Cataldi¹

¹Centre for applied Neurogenetics

2-C-60 A model of epilepsy based on optogenetic kindling *Elvis Cela*¹, Andrew Chung¹, Taiji Wang¹, Per Jesper Sjöström²

¹McGill University, ²The Research Institute of the McGill University Health Centre

2-C-61 Chronic stress induces anxiety via an amygdalar intracellular cascade that impairs endocannabinoid signaling: identification of a common therapeutic target for metabolic and anxiety disorders

Zhaohona Oin¹, Xun Zhou¹, Nihar Pandev¹, Halev Vecchiarelli², Chloe Stewart¹, Xia Zhang³, Diane Lagace⁴, Jean Michel Brunel⁵, Jean-Claude Beique⁶, Alexandre Stewart⁷, Matthew Hill², Hsiao-Huei Chen¹

¹Ottawa Hospital Research Institute/ University of Ottawa, ²University of Calgary, ³Royal Ottawa Mental Health Centre, ⁴ University of Ottawa, ⁵Aix-Marseille Université, ⁶University of Ottawa, ⁷University of Ottawa Heart Institute

2-C-62 Neuropathology in APP/PS1 Mice is Exacerbated after CHIMERA (Closed-Head Impact Model of Engineered Rotational Acceleration)-Induced Traumatic Brain Injury

Wai Hang Cheng¹, Dhananjay Namjoshi¹, Kris Martens¹, Anna Wilkinson¹, Taylor Ward-Able¹, Arooj Hayat¹, Kurt McInnes¹, Peter

Cripton¹, Cheryl Wellington¹ ¹University of British Columbia

2-C-63 Chronic Minocycline Treatment Rescues Social Interaction Deficit in Fmr1 KO Mice

*Christine Chiu*¹, Mariana Vetrici¹, Suk-Yu Yau¹, Brian Christie¹ ¹University of Victoria

2-C-64 Stimulatory effects of nACh-R agonist activation on open field locomotor behaviour in a Rett syndrome mouse model. *David McPhee*², Tony Renda², Jay Leung², Raad Nashmi², Kerry Delaney²

¹Univ. of Victoria, ²University of Victoria

2-C-65 Extracellular Vesicles from Amyotrophic Lateral Sclerosis Tissue have Misfolded SOD1 Cargo and Are Implicated in Propagation of Protein Misfolding

Sarah Fernando¹, Judith Silverman¹, Leslie Grad¹, Neil Cashman¹

¹University of British Columbia

2-C-66 Neonatal Odor Learning Impairments Following Prenatal Ethanol Exposure

*Christine Fontaine*¹, James Dunbar¹, Julie Munich¹, Anna Patten¹, Brian Christie¹

¹University of Victoria

2-C-67 CD8+T cells increase the encephalitogenic potential of CD4+T cells in a novel mouse model of multiple sclerosis *Prenitha Mercy Ignatius Arokia Doss*¹, Andree-Pascale Roy¹, Joanie Baillargeon¹, Manu Rangachari¹

¹Centre Hospitalier Université Laval (CHUL), Quebec city

2-C-68 Can five weeks of arm cycling training improve walking and interlimb coordination in chronic stroke?

Chelsea Kaupp¹, Taryn Klarner¹, Natalia Zapotoczny¹, Yao Sun¹, Hilary Cullen¹, Trevor Barss¹, Gregory Pearcey¹, Paul Zehr¹

¹University of Victoria

2-C-69 Seizures during brain circuit formation Dong Hwan Kim¹, Kurt Haas¹

¹University of British Columbia

2-C-70 Arm and leg cycling training improves neurological function and walking ability after stroke

*Taryn Klarner*¹, Trevor Barss¹, Yao Sun¹, Chelsea Kaupp¹, Gregory Pearcey¹, Pamela Loadman¹, E Paul Zehr¹

¹University of Victoria

2-C-71 Burst-Predicting Neurons Survive an in vitro Excitotoxic Injury Model of Cerebral Ischemia

*Eric Kuebler*¹, Joseph Tauskela², Amy Aylsworth², Xigeng Zhao², Jean-Philippe Thivierge¹

¹University of Ottawa, ²National Research Council of Canada

2-C-72 Cortical spreading depression induces a transient disruption of the blood-brain barrier prevented by rho-kinase inhibition and associated with increased transcytosis *Rantista Lacosta*¹ Homa Sadoghian¹ Poherte Poca¹ Tao Qin¹ Conk

*Baptiste Lacoste*¹, Homa Sadeghian¹, Roberto Rosa¹, Tao Qin¹, Cenk Ayata¹, Chenghua Gu¹

¹Harvard University

2-C-73 A graph theoretical approach to altered resting state fMRI cortical networks in Multiple Sclerosis

Sue-Jin Lin¹, Aiping Liu¹, Alex MacKay¹, Irene Vavasour², Brenda Kosaka², Samantha Beveridge¹, David Li³, Anthony Traboulsee¹, Yinshan Zhao¹, Roger Tam³, Silke Appel-Cresswell¹, Martin McKeown¹ ¹University of British Columbia, ²University of British Columbia Hospital, ³University of British Columbia Hospital

2-C-75 A comprehensive database of cell-type specific marker genes for the mammalian brain

Burak Mancarci¹, Ogan Mancarci¹, Lila Toker¹, Shreejoy Tripathy¹, Paul Pavlidis¹

¹UBC

2-C-76 Exercise modulates neural stem cell proliferation in a mouse model of Fragile-X syndrome *Alicia Meconi*¹, Zoe Sharp¹, Brian Christie¹

¹University of Victoria

2-C-77 Using eye movements to identify early biomarkers of disease progression in Parkinson's patients with and without LRRK2 gene mutations

*Julia Morris*¹, Don Brien¹, Brian Coe¹, Naomi Visanji², Taneera Ghate², Anthony Lang², Connie Marras², Douglas Munoz¹

¹Queen's University, ²University Health Network

2-C-78 A variant of the presenilin-1 protein protects against an aggressive familial Azlheimer-related mutation

Jennifer Nyarko¹, Paul Pennington¹, Jason Maley¹, Darrell Mousseau¹ ¹University of Saskatchewan

2-C-79 Age-dependent vulnerability to nicotine self-administration in mice correlates with expression of α4* nicotinic receptors *Anthony Renda*¹, Nora Penty¹, Pragya Komal¹, Thomas Hoos¹, Raad Nashmi¹

¹University of Victoria

2-C-80 Determining the Efficacy of Endogenous Stem Cell Based Therapy as a Means to Promote Cognitive Recovery Post-Stroke in Adult Mice

Labeeba Nusrat¹, Nadia Sachewsky¹, Andrey Son¹, Dale Corbett², Cindi Morshead¹

¹University of Toronto, ²University of Ottawa

2-C-81 Functional Impairment among children with neurodevelopmental disorders in Abeokuta, Nigeria *Adeniran Okewole*¹

¹Neuropsychiatric Hospital Aro

2-C-82 Evidence of motor neuron specific misfolded SOD1 in wild type mice

*Megan O'Neill*¹, Catherine Cowan¹, A. Jane Roskams², Neil Cashman¹ ¹University of British Columbia, ²Allen Institute for Brain Science

2-C-83 Early cell death in oligodendrocytes measured by spectral changes of the fluorescent nuclear dye acridine orange *Jason Plemel*¹, Michael Keough¹, Andrew Caprariello¹, Shigeki Tsutsui¹, Ileana Micu¹, Evelyn Manford¹, V. Wee Yong¹, Peter Stys¹ ¹University of Calgary 2-C-84 Blocking the propagation of misfolded SOD1 using small molecules as a potential treatment for ALS *T. Dean Airey*¹, Leslie Grad¹, Neil Cashman¹

¹Brain Research Centre

2-C-85 Modulation of ARNT2, a neuroprotective transcription factor, as a regulator of neurodegenerative processes in models of multiple sclerosis

*Tissa Rahim*¹, Andrew Leung¹, Adam Yu¹, Jacqueline Quandt¹ ¹University of British Columbia

2-C-86 The comparative predictive value of early treatment response in antipsychotic-naïve patients with first-episode psychosis: haloperidol versus olanzapine

Sean Rasmussen¹, Patricia Rosebush¹, Michael Mazurek¹ ¹McMaster University

2-C-87 Longitudinal Magnetic Resonance Spectroscopy Changes in Premanifest Huntington's Disease

*Bretta Russell-Schulz*², Terri Petkau², Blair Leavitt², Alex MacKay² ¹UBC MRI Research Centre, ²University of British Columbia

2-C-88 Loss of the Huntington disease-associated palmitoylacyltransferase HIP14 in adulthood leads to sudden unexplained death, motor and psychiatric disturbances, and astrogliosis and microglial activation

*Shaun Sanders*¹, Matthew Parsons¹, Amber Southwell¹, Katherine Mui¹, Sonia Franciosi¹, Lynn Raymond¹, Michael Hayden¹

¹University of British Columbia

2-C-89 Does multi-trauma worsen the outcome of traumatic brain injury? Sandy Shultz¹, Stuart McDonald²

¹The University of Melbourne, ²La Trobe University

2-C-90 Improving molecular diagnostic predictions in infantile epileptic encephalopathies using structural modelling of SCN1A *Alexander Smith*¹, Gemma Pinchin¹, Tara Klassen¹

¹University of British Columbia

2-C-91 Synaptic scaling in cultured neurons from the YAC128 mouse model of Huntington disease

*Amy Smith-Dijak*¹, James Mau¹, Lynn Raymond¹ ¹University of British Columbia

2-C-92 Modifying lipid rafts promotes regeneration and functional recovery

*Nardos Tassew*¹, Andrea Mothe², Alireza Shabanzadeh², Paromita Banjerjee², Philippe Monnier²

¹Toronto Western Research Hospital, ²Toronto Western Research Institute

2-C-93 Optogenetic stimulation of thalamocortical projections to promote structural plasticity and recovery of function after somatosensory cortex stroke

Kelly Tennant¹, Craig Brown¹

¹University of Victoria

2-C-94 Dynamic changes in dendritic spine number in an animal model of Multiple Sclerosis

*Megan Verbeek*¹, Kristin Milloy¹, Shaona Acharjee², Quentin Pittman², Adrienne Benediktsson¹

¹Mount Royal University, ²University of Calgary

2-C-95 5-HT6 serotonin receptor is a new therapeutic target in Neurofibromatosis type 1: the first GPCR regulated by neurofibromin

Deraredj Wissem¹, Séverine Chaumont², Laetitia Cobret³, Hélène Benedetti³, Philippe Marin², Séverine Morisset-Lopez³

¹CNRS Orléans - France, ²CNRS IGF Montpellier, ³CNRS Orléans UPR 4301 - France

2-C-96 Studying the neuronal activity changes in the motor cortex after deep brain stimulation at the subthalamic nucleus of Parkinson?s disease model rat

Cheng Wei Wu¹

¹National Tsing Hua University

2-C-98 Glycine rescues impaired hippocampal synaptic plasticity in Female Fmr1 heterozygous knockout mice

*Suk-yu Yau*¹, Jason Chiu¹, Erica Truesdell¹, Brett Hryciw¹, Christine Chiu¹, Brennan Eadie¹, Brian Christie¹

¹University of Victoria

2-C-99 Identification of a Novel Modulator of Apolipoprotein E in Astrocytes

Shahab Zareyan¹, Jianjia Fan¹, Iva Kulic¹, Yoko Shimizu², Tom Pfeifer², Cheryl Wellington¹

¹Djavad Mowafaghian Centre for Brain Health, ²The Centre for Drug Research and Development

2-C-100 Downregulation of MIF by NFκB signaling under hypoxia accelerated neuronal loss during stroke *Si Zhang*¹

¹University of British Columbia

D - Sensory and Motor Systems

2-D-101 Electrophysiological investigation of TMC9 in mechanotransduction processes

Lou Beaulieu-Laroche¹, Albena Davidova¹, Reza Sharif-Naeini¹ ¹McGill University

2-D-102 Relationship between neck muscle neural control and biomechanics

Jason Fice¹, Gunter Siegmund², Jean-Sebastien Blouin¹ ¹University of British Columbia, ²MEA Forensic Engineers and Scientists

2-D-103 Differential Patterns of Projections to the Posterior Auditory Field in Early- and Late-Deaf Cats *Blake Butler*¹, Stephen Lomber¹

¹University of Western Ontario

2-D-104 In vivo, mesoscale voltage imaging of cortical dynamics as a platform for investigating mouse models of neurodegenerative and psychiatric disease *Allen Chan*¹, Majid Mohajerani², Jeffrey LeDue¹, Yu Tian Wang¹, Timothy Murphy¹

¹University of British Columbia, ²University of Lethbridge

2-D-105 A combined optogenetic and fMRI approach for the study of cerebellum-to-cerebrum connections *Katrina Choe*¹, Paul Mathews¹, Ka-Hung Lee¹, Andrew Frew¹, Roger Woods¹, Thomas Otis¹

¹University of California, Los Angeles

2-D-106 Neural coding strategies used by the vestibular system are matched to the statistics of natural stimuli

Kathleen Cullen¹, Mohsen Jamali¹, Jerome Carriot¹, Adam Schneider¹, Maurice Chacron¹

¹McGill Univ

2-D-107 Prolonged cognitive-motor impairments in children with a history of concussion Marc Dalecki¹, Lauren Sergio¹

¹York University

2-D-108 Suppression of vestibulocollic reflexes during head movements

Patrick Forbes¹, Jason Fice², Alfred Schouten³, Gunter Siegmund⁴, Jean-Sébastien Blouin²

¹University of British Columbia/Delft University of Technology, ²University of British Columbia, ³Delft University of Technology, ⁴MEA Forensic Scientists & Engineers

2-D-109 Switch in the type of t-SNARE protein during trafficking of the transient receptor potential vanilloid 1 (TRPV1) in a model of inflammatory pain

Sahar Jaffal¹

¹McGill

2-D-110 Mere Expectation of Haptic Feedback Facilitates Shift from Pantomimed to Natural Grasp

Nathan Katz¹, Robert Whitwell², James Enns², Melvyn Goodale¹ ¹University of Western Ontario, ²University of British Columbia

2-D-111 Cumulative activation effect predicts faster reaction times compared to startle only related activity

*Michael Kennefick*¹, Paul van Donkelaar¹, Anthony Carlsen² ¹University of British Columbia, ²University of Ottawa

2-D-112 The influence of somatosensory feedback on visuomotor adaptation Sajida Khanafer¹, Keri-Lyn Andrus¹, Erin Cressman¹

¹University of Ottawa

2-D-113 Optogenetic Silencing of Mouse Primary Visual Cortex **Affects Orientation Adaptation** Jillian King¹, Nathan Crowder¹

¹Dalhousie University

2-D-114 Real-time in vivo measurement of corticostriatal afferent activity during skill learning David Kupferschmidt¹, Guohong Cui², David Lovinger¹ ¹NIH / NIAAA, ²NIH / NIEHS

2-D-115 Chloride dysregulation causes disproportionate disinhibition of excitatory interneurons in spinal dorsal horn: implications for neuropathic pain

Kwan Lee¹, Kwan Yeop Lee¹, Steven Prescott¹ ¹Sickkids hospital, University of Toronto

2-D-116 Subsaccadic FEF microstimulation induces pupil dilation

Sebastian Lehmann¹, Brian Corneil¹

¹University of Western Ontario

2-D-117 Postural Threat Influences Vestibular-Evoked Muscular Responses

Shannon Lim², Taylor Cleworth², Jean-Sébastien Blouin², J. Timothy Inglis², Mark Carpenter²

¹University of British Columbia, ²The University of British Columbia

2-D-118 Is reduced cutaneous sensitivity predictive of weakened synaptic coupling between skin and muscle in the elderly?

Ryan Peters¹, Monica McKeown¹, Mark Carpenter¹, Tim Inglis¹

¹University of British Columbia

2-D-119 Asymmetrical medical geniculate body volume in people with one eye

Stefania Moro¹, Krista Kelly¹, Larissa McKetton¹, Jennifer Steeves¹ ¹York University

2-D-120 RAGE-dependent sensitization of sensory neurons innervating airway submucosal glands: possible role in airway hypersecretion

Manoi Nair¹, Yasuhiko Yamamoto², Juan Janowski¹, Veronica Campanucci¹

¹University of Saskatchewan, ²Kanazawa University

2-D-121 Activation of glutamate receptors in rat dural blood vessels mediates vasodilation

Melissa O'Brien¹, Xudong Dong¹, Brian Cairns¹

¹University of British Columbia

2-D-122 Does plasticity in muscle afferent reflex pathways accompany cross-education of the wrist flexors? Gregory Pearcey¹, Trevor Barss¹, Yao Sun¹, Taryn Klarner¹, E Paul Zehr¹ ¹University of Victoria

2-D-123 a5GABAA receptors mediate tonic inhibition and central sensitization in the dorsal horn of the spinal cord Jimena Perez-Sanchez¹, Robert Bonin¹, Louis-Etienne Lorenzo¹, Charalampos Labrakakis², Erica Bridgwater³, Beverly Orser³, Yves De Koninck¹

¹CRIUSMQ, Université Laval, ²University of Ioannina, ³University of Toronto

2-D-124 Spatial transformations of the vestibular control of standing balance

Brandon Rasman¹, Brian Dalton², J Timothy Inglis¹, Jean-Sébastien Blouin¹

¹University of British Columbia, ²University of Oregon

2-D-125 Role of the Cav3-Kv4 complex in mediating synaptic learning in cerebellar granule cells

Arsalan Rizwan¹, Gerald Zamponi¹, Ray Turner¹

¹The University of Calgary

2-D-126 Natural scene movie responses are more precise in synchronized than desynchronized cat V1 Martin Spacek¹, Nicholas Swindale¹

¹University of British Columbia

2-D-127 The functional organization of local neural networks providing input to single cortical neurons Adrian Wertz¹, Stuart Trenholm¹, Botond Roska¹

E - Homeostatic and Neuroendocrine Systems

2-E-128 cFos expression in newborn chicks: relationship to sleep and waking

*Aimee Chan*¹, Si Han Li¹, Maria Pompeiano¹ ¹McGill University

2-E-129 Hypothalamic CRH neurons are an entry point for a circuit that drives stress coping behavior

Tamás Füzesi¹, Jaclyn Wamsteeker Cusulin¹, Jaideep Bains¹ ¹University of Calgary

2-E-130 The Role of Ghrelin in the Mediation of the Stress Response in Female Mice

*Rim Khazall*¹, Zack Patterson¹, Meheria Arya¹, Alfonso Abizaid¹ ¹Carleton University

2-E-131 Sex-specific consequences of neonatal stress on laryngeal chemoreflex stimulation in rat pups: Contribution of excitatory currents onto key brainstem regions

*Richard Kinkead*¹, Cécile Baldy¹, Simon Chamberland¹, Richard Kinkead¹

¹Université Laval

2-E-132 D2 autoreceptor function is intact after diet induced obesity

*Kimberley Pitman*¹, Michael Drysdale², Manpreet Kaur², Jennifer Thompson², Stephanie Borgland²

¹University of British Columbia, ²HBI University of Calgary

F - Cognition and Behavior

2-F-133 Probing procedural strategy with a spatial working memory task: A potential marker of intact frontal function *Alenka Bullen*¹, Robert Marino¹, Ron Levy¹

¹Queen's University

2-F-134 Morphine withdrawal critically involves spinal P2X7 receptors

Nicole Burma¹, Tuan Trang¹

¹University of Calgary

2-F-135 Variations in brain activity as a function of hand/target visual feedback availability *Darian Cheng*¹, Krista Fjeld¹, Gordon Binsted¹

¹University of British Columbia

2-F-136 Disruption of AMPA receptor endocytosis blocks context-dependent behavioral sensitization to amphetamine *Fiona Choi*¹, Yu Tian Wang², Anthony Phillips³

¹Institute of Mental Health, UBC, ²UBC, ³Institute of Neurosciences, Mental Health and Addiction, UBC

2-F-137 Stress and personality interact to modulate the neural response to food cues

Selin Neseliler¹, Kevin Larcher¹, Beth Tannenbaum¹, Maria Zacchia¹, Jens Pruessner¹, Alain Dagher¹

¹McGill University

2-F-138 A novel procedure for establishing appetitive latent inhibition that is unaffected by disruption of regulated AMPA receptor endocytosis

*Carine Dias*¹, Donovan Ashby¹, Yu Tian Wang¹, Anthony Phillips¹ ¹University of British Columbia

2-F-139 Neural networks in attention and reading

Marla Mickleborough¹, Layla Gould¹, Chelsea Ekstrand¹, Eric Lorentz¹, *Tessa McKibben*¹, Ron Borowsky¹

¹University of Saskatchewan

2-F-140 Hippocampal activity during contextual learning and virtual navigation in non-human primates *Roberto Gulli*¹, Guillaume Doucet¹, Benjamin Corrigan¹, Sylvian Williams¹, Julio Martinez-Trujillo² ¹McGill University, ²University of Western Ontario

2-F-141 Locomotor effects of cocaine are enhanced by ghrelin delivered directly into the Nucleus accumbens *Marianne Klein*¹, Lindsay Hyland², Alexander Edwards², Alfonso Abizaid²

¹University of São Paulo, ²Carleton University

2-F-142 Remembering in quadrants: Non-linear representation of mnemonic space in the primate brain

Matthew Leavitt¹, Adam Sachs², Julio Martinez-Trujillo³

¹McGill University, ²Ottawa Hospital Research Institute, University of Ottawa, ³University of Western Ontario

2-F-143 How to achieve and stay at the top percentile: practices pattern analysis from mobile computerized cognitive trainings *Conny Lin¹*, Mark Baxter², Catharine Rankin¹, Paul Nussbaum³

¹University of British Columbia, ²Fit Brains By Rosetta Stone, ³University of Pittsburgh School of Medicine

2-F-144 Sensory Afferents Activated by Gentle Touch Contribute to Self-Grooming and Social Behaviour

*Mireille Desrochers-Couture*¹, Robert Bonin¹, Yves De Koninck¹, Anna Lomanowska¹

¹Laval University

2-F-145 Feeling 'blue' and seeing 'red': Associations of emotion and colour in variants of the Stroop task

*Eric Lorentz*¹, Marla Mickleborough¹, Layla Gould¹, Chelsea Ekstrand¹, Ron Borowsky¹

¹University of Saskatchewan

2-F-146 A glycine receptor subunit homologue, AVR-14, alters short-term memory in an interstimulus interval-dependent manner in C. Elegans

*Troy McDiarmid*¹, Evan Ardiel¹, Catharine Rankin¹ ¹Univerisity of British Columbia

University of British Columbia

2-F-147 CaMKII mediates input-specific early odor preference learning in rats Shirin Modarresi¹, Qi Yuan¹

¹Memorial University of Newfoundland

2-F-148 The synthetic tetrahydroprotoberberine d-Govadine facilitates extinction of conditioned place preference induced by d-amphetamine or food reward

Maya Nesbit¹, Carine Dias¹, Anthony Phillips¹

¹University of British Columbia

2-F-149 Approach-avoidance processing: the role of nucleus accumbens shell D2 receptors in conflict resolution *David Nguyen*¹, Victoria Fugariu¹, Suzanne Erb¹, Rutsuko Ito¹ ¹University of Toronto

48

2-F-150 The effect of reduced neurogenesis on visuo-spatial learning and memory in the GFAP-TK rat.

Timothy O'Leary¹, Jason Snyder¹

¹University of British Columbia

2-F-151 Catching the same wave: Successful teamwork is linked to between-brain synchrony

*Ana Pesquita*¹, Caroline Szymanski², Allison Brennan³, Dionysios Perdikis², James Enns¹, Müller Viktor², Ulman Lindenberger²

¹University Of British Columbia, ²Max Planck Institute for Human Development, ³Simon Fraser University

2-F-152 Toluene,Hippocampus Structure and Recognition Memory: adult and adolescent rats *Nino Pochkhidze*¹

¹llia state university, I.Beritashvili center of Experimental Biomedicine

2-F-153 Adult neurogenesis increases preference for future rewards

Desiree Seib¹, Ru Qi Yu¹, Stan Floresco¹, Jason Snyder¹ ¹University of British Columbia

2-F-154 ERPs differentially reflect automatic and deliberate processing of the functional manipulability of objects *Christopher Madan*¹, Yvonne Chen¹, Anthony Singhal¹

¹University of Alberta

2-F-155 Effects of an acute bout of moderate-intensity aerobic exercise on motor learning in a continuous tracking task. *Nick Snow*¹, Cameron Mang¹, Marc Roig², Michelle McDonnell³, Kristin Campbell¹, Lara Boyd¹

¹University of British Columbia, ²McGill University, ³University of South Australia

2-F-156 Single-trial Decoding of Visual Attention from Local Field Potentials in the Primate Lateral Prefrontal Cortex *Sébastien Tremblay*¹, Guillaume Doucet¹, Florian Pieper², Adam Sachs³, Julio Martinez-Trujillo⁴

¹McGill University, ²University Medical Center Hamburg-Eppendorf, ³University of Ottawa, ⁴Western University

2-F-157 Targeted pharmacogenetic interrogation of a fear memory network

*Gisella Vetere*¹, Anne Wheeler¹, Justin Kenney¹, Leonardo Restivo¹, Sheena Josselyn¹, Paul Frankland¹

¹Hospital for Sick Children

2-F-158 Long-term memory formation is required for training-associated changes in brain structure volume

*Dulcie Vousden*¹, Matthijs van Eede¹, Adelaide Yiu¹, Leigh Spencer Noakes¹, Brian Nieman¹, Mark Henkelman¹, Sheena Josselyn¹, Paul Frankland¹, Jason Lerch¹

¹University of Toronto

2-F-159 Effects of pre and post-training administration of glucose and fructose: the importance of non-specific interpretations for memory consolidation

Paul Marshall¹, Thomas Horman¹, Francesco Leri¹

¹University of Guelph

G - Novel Methods and Technology Development

2-G-160 Development of an intravital multi-plane multiphoton microscopy platform for functional cellular imaging in living mice

*Erik Bélanger*¹, Feng Wang¹, Sylvain Côté¹, Daniel Côté¹, Yves De Koninck¹

¹Université Laval

2-G-161 Self-directed, high-throughput, and automated mouse motor-learning home cage assays

*Federico Bolaños*¹, Gergely Silasi¹, Jamie Boyd¹, Jeff LeDue¹, Stephen Scott¹, Timothy Murphy¹

¹UBC

2-G-162 Assessing connectivity in real neuronal networks from cellular activity

Patrick Desrosiers¹, Simon Labrecque¹, Paul De Koninck¹, Daniel Côté¹ ¹Université Laval

2-G-163 MiniPromoters Driving PAX6-like Retinal Expression Designed from Bioinformatically Predicted Regulatory Regions Jack Hickmott¹, Chih-yu Chen¹, David Arenillas¹, Yifeng Li¹, Laurie Molday¹, Andrea Korecki¹, Siu Ling Lam¹, Russell Bonaguro¹, Michelle Zhou¹, Alice Chou¹, Sanford Boye², William Hauswirth², Robert Molday¹, Wyeth Wasserman¹, Elizabeth Simpson¹

¹University of British Columbia, ²University of Florida

2-G-164 Localized light-induced stimulation of hippocampal neurons with cell surface?bound gold nanoparticles *Flavie Lavoie-Cardinal*¹, Eric Bergeron², Charleen Salesse¹, Michel Meunier², Paul De Koninck¹

¹Université Laval, ²Ecole Polytechnique de Montréal

2-G-165 A Cortical Thickness Gowth Model for Neurodegenerative Analysis *Poay Hoon Lim*¹, Wee Keong Lim²

¹Polytechnique Montreal & CHU Sainte–Justine, ²Dawson College & Marianopolis College

2-G-166 NeuroFluor CDr3: A Novel Tool for the Detection of Live CNS and Human Pluripotent Stem Cell-Derived Neural Stem and Progenitor Cells

*Carmen Mak*¹, Vivian Lee¹, Sam Lloyd-Burton¹, Allen Eaves², Terry Thomas¹, Sharon Louis¹

¹STEMCELL Technologies Inc., ²Terry Fox Laboratory, BC Cancer Agency

2-G-167 Effective Gene Silencing in Brain and Spinal Cord In Vivo Models Mediated by Lipid Nanoparticle Technology James Taylor¹, Oscar Seira², Jie Liu², Aysha Ansari¹, David Zwaenepoel¹, Colin Walsh¹, Anitha Thomas¹, Timothy Leaver¹, Andre Wild¹, James Taylor¹, Euan Ramsay¹, Pieter Cullis², Wolfram Tetzlaff² ¹Precision NanoSystems Inc., ²University of British Columbia

2-G-168 Neuromodulatory opto-fMRI

Bechara Saab¹, Joanes Grandjean², Edward Mann³, Markus Rudin² ¹University of Zürich, ²Swiss Federal Institute of Technology, ³University of Oxford 2-G-169 A deterministic, rapid-access microscope and monitoring system for high-throughput data acquisition of neuron activity in the awake brain *Kelly Sakaki*¹, Kurt Haas¹

¹Djavad Mowafaghian Centre for Brain Health

2-G-170 Plasma Soluble Prion Protein as a Potential Biomarker for the Traumatic Brain Injury *Nam Pham*¹, Thomas Sawyer², Yushan Wang², Rhonda Shishkin¹, Changiz Taghibiglou¹

¹University of Saskatchewan, ²Defence Research and Development Canada

2-G-171 Genome-wide association for sensory neuron function in C. elegans using an automated behavioural tracking system. *Tiffany Timbers*¹, Katherine Lee¹, Donald Moerman², Michel Leroux¹ ¹Simon Fraser University, ²University of British Columbia

2-G-172 Mesoscale transcranial cortical imaging with fast kinetic genetic-encoded glutamate sensor - iGluSnFr *Yicheng Xie*¹, Timothy Murphy¹

¹University of British Columbia

IBRO – International Brain Research Organisation

2-IBRO-175 Nociceptive hypersensitivity induced by Herpes Simplex-1 is a consequence of leukocyte migration and production of inflammatory mediators at infected dorsal root ganglia

Jaqueline Silva¹, Jhimmy Talbot¹, Alexandre Lopes¹, Thiago Cunha¹, Fernando Cunha¹

¹Ribeirao Preto Medical School of University of Sao Paulo

2-IBRO-176 Effects of Cold Exposure on Behavioral and Electrophysiological Parameters.Related with Hippocampal Function in Rats

*Hajar el Marzouki*¹, Youssef Aboussaleh¹, Sonar Bitiktas², Cem Suer², Aise Seda Artis³, Nazan Dolu², Ahmed Ahami¹

¹Ibn Tofail University Faculty of Sciences, Kénitra, ²Erciyes University School of Medicine, ⁴Istanbul Medeniyet University Medical Faculty

2-IBRO-177 The neuroprotective effects of recombinant erythropoietin isoform with low glicosilation is mediated by activation of BCL2 pathway

*Carolina Castillo*¹, Angela Hidalgo¹, Tiare Silva-Grecchi¹, Jorge Fuentealba¹, Jorge Toledo¹

¹Universidad de Concepción

2-IBRO-178 Cell-type specific chloride dynamics in epilepsy. *Hayley Tomes*¹, Lauriston Kellaway¹, Joseph Raimondo¹

¹University of Cape Town

2-IBRO-179 Characterization of TDP43 misfolding in an experimental model of ALS/FTD *Leslie Bargsted*¹, Danilo Medinas¹, Pablo Rozas¹, Claudio Hetz¹, Soledad Matus² ¹University of Chile, ²Neurounion Foundation

Plexon is the pioneer and global leader in custom, high performance, and comprehensive data acquisition and behavioral analysis solutions specifically designed for neuroscience research.

Every other day another new lab around the world trusts their most important research to Plexon

www.plexon.com

CAN-ACN EXHIBITORS

CAN-ACN receives support from a number of companies providing services to our community. Please show your apprecitiation for their support by visiting the exhibit booths during the conference to learn about their products and services.

Abcam

Booth 212

Abcam plc is a provider of protein research tools and services, with an unrivaled range of products and expert technical support, enabling scientists to analyze living cells at the molecular level and improving the understanding of health and disease. To find out more, please visit <u>www.abcam.com</u>

Email us.orders@abcam.com Web www.abcam.com Twitter www.twitter.com/abcam Facebook www.facebook.com/abcam

ALZET Osmotic Pumps/DURECT Corp Table Top 2

ALZET® Osmotic Pumps are small infusion devices for continuous administration of agents to unrestrained laboratory animals as small as mice. They are a convenient and reliable alternative to frequent injections and other repetitive dosing methods. Once implanted, drug administration is automatic with no animal handling or external connections required during the infusion period. They are easily attached to a catheter or brain cannulae for administration to the spinal cord, cerebral ventricles or brain tissue. ALZET pumps have been used in over 15,000 published studies for delivery of neurotrophic factors, neuropeptides, oligonucleotides, and more. Learn more at <u>www.alzet.com</u>.

Email	alzet@durect.com
Web	www.alzet.com

Animal Care Systems

Table Top 5

Animal Care Systems manufactures the only motor-free rodent caging system in the industry. Combining "twice the mice" density with our unique carousel design, our caging provides a microenvironment that is free of noise, vibration and ultrasound, creating a variable-free environment. We have established a stellar reputation for our superior customer service and product support. Our Mission To provide innovative rodent caging systems that save energy and protect animals, their caretakers and the environment. Our Company Established in 1997, Animal Care Systems is the first caging systems company in the industry founded by a veterinarian w with experience in directing AAALAC-accredited animal care & use programs. Dr. Germain Rivard's experience with animal facility planning, design and management produced the construction of the first Gene Transfer Technologies Training Center and Rodent Barrier Facility for genetically altered mouse colonies.

Email *info@animalcaresystems.com* Web *www.animalcaresystems.com*

Blackrock Microsystems Booth 203

Our focus at Blackrock Microsystems is helping researchers achieve excellence in neuroscience, neural-engineering and neural-prosthetics. Blackrock provides technical support from start to finish to ensure whole system performance and data reliability. We are here to help you publish faster by ensuring that you gather accurate data. We have developed the largest portfolio of FDA and CE cleared systems for human use in the world, which means they have been extensively documented and proven to be highly reliable and safe. R&D efforts consistently raise the bar on data quality through such innovations as wireless technologies, miniaturization, ultra-high channel densities and low-noise perform.

Email	eestheimer@blackrockmicro.com
Web	www.blackrockmicro.com
Facebook	www.facebook.com/pages/Blackrock

CIHR Institute of Neurosciences, Mental Health and Addiction Booth 106

The CIHR Institute of Neurosciences, Mental Health and Addicion (CIHR-INMHA) fosters research into the functioning and disorders of the brain and the mind, the spinal cord, the sensory and motor systems and mental health, mentall illness and all forms of addiction. CIHR-INMHA aims to translate new knowledge into improved health outcomes and quality of life for all Canadians.

Email	diane.parsons@cihr.gc.ca
Web	www.cihr-irsc.gc.ca

Clever Sys Inc.

Booth 207

Clever Sys Inc., is a bioinformatics company specializing in software and hardware for automated behavioral testing. Our video based technology provides comprehensive tools for data acquisition and analysis. Clever Sys Inc., brings behavioral testing into the twenty-first century, enhancing video tracking with our patented next generation Behavior Recognition technology.

Email sales@cleversysinc.com Web www.cleversysinc.com

Fine Science Tools

Booth 100

Fine Science Tools[™] offers more than 900 high–quality European surgical and microsurgical instruments for research scientists and other professionals. Whatever you need – spring scissors, forceps, surgical accessories, scalpels, retractors, clamps, and more – we carry only the best. Visit us for a free copy of our complete catalog, or order online at finescience.ca. For expertise, quality, selection, and your guaranteed satisfaction, it's Fine Science Tools.

Email info@finescience.com Web finescience.com

HEKA Electronics Inc.

Booth 209

For over 45 years, HEKA has been among the market leaders in patch clamp systems and major players in electrochemistry equipment. Throughout these years there have been many changes in research, instrumentation and software. HEKA's goal has always been to foster progress and shape those changes, while committing to our most important business partner, our customer. Recent product launches include the Imaging Extension Software, ElProScan Advanced Scanning Electrochemistry Microscopes, and iTEV 90 Computerized Two–electrode Clamp Amplifier. HEKA's established portfolio of patch clamp and electrochemistry systems, interfaces and software enjoys increasing popularity in the scientific community.

Email nasales@heka.com Web www.heka.com

Huron Digital Pathology Booth 204

Based in Waterloo, Ontario, Canada, Huron Digital Pathology has a 20 year history designing sophisticated imaging instrumentation. Our end-to-end digital whole slide scanning solutions for digital pathology incorporate our award-winning TissueScope™ digital slide scanners; TissueView™ image viewing, sharing and management platform; and our workflow-enhancing accessories, which include our innovative TissueSnap™ preview scanning station.

Email **kmiller@huron-technologies.com** Web **www.hurondigitalpathology.com** Twitter **twitter.com/hurondp**

Integrated DNA Technologies Booth 210

Integrated DNA Technologies (IDT) is the world leader in custom nucleic acid manufacturing for the life sciences research and clinical diagnostics markets, serving academic and clinical research, biotechnology, pharmaceutical development, and agricultural research. IDT product applications include qPCR, gene construction, genome editing, next generation sequencing, SNP detection, and functional genomics.

Emailrsetter@idtdna.comWebwww.idtdna.comTwittertwitter.com/idtdnaFacebookwww.facebook.com/idtdna

Lafayette-Campden Neuroscience Booth 201

Lafayette-Campden Neuroscience is proud to offer Animal Behavior and Tissue Sectioning products that are utilized in scientific research and published in journals around the world. Visit us at booth 201 for an explanation of our Operant Chambers (Modular, 5/9 Hole, and Touch Screen), Activity and Feeding Systems, Running Wheels, Vibrating Microtomes, and Slice Recording Chambers. Talk to us; we have the products, partnerships, and experience necessary to assist you in outfitting your laboratory with off-the-shelf or customized solutions! Email *info@lafayetteinstrument.com* Web *www.lafayettelifesciences.com*

Leica Microsystems Canada Inc. Booth 112

Leica Microsystems Canada offers a comprehensive product range backed by expert advice, so you can spend less time on equipment, and more time focused on ground-breaking science! Visit our booth to learn about new solutions for 3D super-resolution image acquisition and visualization of nanoscale fluorescence structures. The Leica suite of products also includes advanced stereotaxic instruments and EM Specimen Prep instruments. Our advanced sample preparation instruments allow you to always have fresh and paraffin-embedded biological specimens. From Stereotaxic and Sample Preparation through to Electrophysiology and Imaging, Leica Microsystems is your ideal Total Neuroscience partner!

Email	brian.smida@leica-microsystems.com
Web	www.leica-microsystems.com
Twitter	www.twitter.com/LeicaMicro
Facebook	www.facebook.com/LeicaMicrosystems

NeuroNexus

Booth 102

NeuroNexus is a global leader for innovative neural interface products and technologies to meet current and emerging needs in neuroscience research, neurosurgery, and neurostimulation. Our diverse line of products is used in species ranging from fruit flies to non-human primates to precisely record, stimulate, and deliver drugs across all areas of the nervous system. Our technologies and products are aimed at advancing brain research and therapies.

Email	support@NeuroNexus.com
Web	NeuroNexus.com
Twitter	@neuronexustech

Noldus Information Technology Booth 200

Noldus Information Technology: powerful software tools, fully integrated labs, and expert consultancy.

We have been making professional tools and instruments for animal behavior research for more than 25 years. These products enable the collection, integration, analysis, management, and presentation of behavioral and other data. Our product range for neuroscience research includes EthoVision XT video tracking, The Observer XT behavior annotation, CatWalk XT footprint and gait analysis, ErasmusLadder cerebellar phenotyping, PhenoTyper home cage testing, DanioScope zebrafish embryo and larvae measurements, and DanioVision zebrafish larvae activity monitoring. Our latest new addition is UltraVox XT for ultrasonic vocalization recording and analysis.

Email	yvonne@noldus.com
Web	www.noldus.com

CAN-ACN EXHIBITORS

Olympus Canada Inc

Booth 110

Olympus Canada Scientific Equipment Group provides innovative microscope and image analysis solutions to researchers, doctors, clinicians, educators as well as to most industrial market sectors such as Petrochemical, University Departments (Earth Sciences and Geology), private companies and organizations. Olympus microscope systems offer unsurpassed optics, superior construction and system versatility to meet the ever-changing needs of microscopists, paving the way for future advances in life science. Please visit us at <u>www.olympuscanada.com</u> for more information on all our products.

Email *laura.boccia@olympus.com* Web *www.olympuscanada.com*

Parkinson Society Canada - Société Parkinson Canada Table Top 6

Parkinson Society Canada (PSC) is the national voice of Canadians living with Parkinson's disease. From diagnosis to discovery, since 1965 PSC provides education, advocacy and support services to individuals and health care professionals. The National Research Program funds innovative research to search for better treatments and a cure. Parkinson Society Canada is an accredited organization under the new Imagine Canada Standards Program. For information and support near you, contact 1–800–565.3000 or visit online at www.parkinson.ca. Health professionals visit *www.ParkinsonClinicalGuidelines.ca*.

Email	info@parkinson.ca
Web	www.parkinson.ca
Twitter	@ParkinsonCanada
Facebook	ParkinsonSocietyCanada

Plexon

Booth 109

Plexon is a pioneer and leading innovator of custom, high performance data acquisition, behavior and analysis solutions specifically designed for scientific research. We collaborate with and supply thousands of customers including the most prestigious neuroscience laboratories around the globe driving new frontiers in areas including basic science, brain-machine interfaces (BMI), neurodegenerative diseases, addictive behaviors and neuroprosthetics. Plexon offers integrated solutions for in vivo neurophysiology, optogenetics and behavioral research -- backed by its industry-leading commitment to quality and customer support. *www.plexon.com*.

Email crystal@plexon.com Web www.plexon.com

Precision NanoSystems Inc. Booth 211

Precision NanoSystems Inc. (PNI) was launched in 2013 and is based in Vancouver, Canada. PNI's proprietary equipment (NanoAssemblr ™) and reagent kits (SUB9KITS ™) enable the manufacture of nanoparticles used in medical research and drug development. Nanomedicines are the FedEx of the health-care industry and are used for cell-specific delivery of research tools and drugs. PNI's nanoparticles are naturally taken up by primary cells in vitro and in vivo giving researchers a powerful tool that is relevant from pilot study through to phase trials of therapeutics. Built on significant advancements in microfluidics, users can now accelerate their understanding of disease and gene therapies.

Email	tskrinskas@precision-nano.com
Web	www.precisionnanosystems.com
Twitter	@PrecisionNano

Scientifica Ltd

Booth 104

Discover Scientifica's latest product developments in electrophysiology, imaging and optogenetics. Talk to a product specialist for free advice about optimising budgets, improving imaging and streamlining experiments. See the SliceScope Pro 6000 system and how you can use it to combine in vivo and in vitro research. Discuss how our award-winning multiphoton systems could boost your results and find out more about LASU, our new optogenetic and uncaging system, simplifying the introduction of photostimulation techniques into your lab. Scientifica's solutions are used throughout the world at top universities, research centres and pharmaceutical companies. Come and meet us to find out why.

Email	george.ward@scientifica.uk.com
Web	www.scientifica.uk.com
Twitter	twitter.com/scientifica_int
Facebook	www.facebook.com/ScientificaLtd

Society for Neuroscience Booth 105

The Society for Neuroscience (SfN) is a nonprofit membership organization of nearly 38,000 scientists and physicians from around the world who study the brain and nervous system. The Society publishes The Journal of Neuroscience, the most-cited journal in the field, as well as the new open-access journal eNeuro. Embodying an emerging scientific vision that offers a new experience for authors and readers, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. Stop by stand 43 to learn about becoming a member of SfN and sharing your research with the global scientific community.

Email	info@sfn.org
Web	SfN.org
Twitter	sfntweets
Facebook	societyforneuroscience

STEMCELL Technologies, Inc. Booth 108

STEMCELL Technologies Inc. is a leader in the development of specialty cell culture media, cell separation products and ancillary reagents to support life science research. The NeuroCult[™] product line includes nearly 30 different media products, culture assays and differentiation kits for primary mammalian neural stem cells, as well as media supplements for primary neuronal culture. The STEMdiff[™] Neural System is a suite of reagents for derivation, expansion and cryopreservation of human pluripotent stem cell-derived neural progenitor cells. Learn from NeuroCult[™] and STEMdiff[™] protocols, educational videos, webinars and mini-reviews at <u>www.stemcell.com.</u>

Email *info@stemcell.com* Web *www.stemcell.com*

Stoelting Co.

Booth 103

Stoelting Co. has been an innovator in producing superior neuroscience research equipment since 1886. Our unique product line includes a variety of behavioral testing equipment, including ANY-maze[™] video tracking software, behavior apparatuses, stereotaxic equipment and surgical instruments. As the exclusive North American distributor of Ugo Basile products, Stoelting Co. is better able to serve customers, offering the finest, most extensive pain product line in the industry. At Stoelting, we have a strong commitment to support scientific research. We seek to offer only high quality, reliable instruments, with prompt, educated customer service from our staff of science professionals!

Email	Lauren@StoeltingCo.com
Web	www.StoeltingCo.com
Twitter	@StoeltingNeuro

StressMarq Biosciences Inc. Table Top 1

StressMarq Biosciences Inc. is a life science company which supplies the worldwide research community with high quality reagents, primarily specialized antibodies, proteins, kits and small molecules. It specializes in the cellular stress and neuroscience sectors, with a focus in the latter on ion channel and transporter research products. The main clients are Universities, hospitals, research foundations, pharmaceutical and biotechnology companies all around the world. StressMarq reaches these clients through a wide number of direct and international distribution arrangements covering over 40 countries.

Email info@stressmarq.com Web www.stressmarq.com Twitter twitter.com/stressmarq Facebook www.facebook.com/Stressmarq

Ted Pella, Inc.

Booth 111

Ted Pella, Inc. offers microscopy instruments and supplies worldwide, serving Neuroscience laboratories utilizing light, fluorescence, confocal and electron microscopes. We are manufacturer of the new PELCO easiSlicer[™] vibratory microtome, the new standard in affordable, quality fresh tissue sectioning. Our instrument line includes Dosaka Microslicers, Motic light microscopes and digital cameras and the PELCO Biowave[®] Pro Microwave Tissue Processor. We provide brain matrices, surgical supplies, gold conjugates and lab reagents. We offer humidity chambers, wellplate inserts, glassware and glass bottom dishes. We carry PAP pens, microscope slides and coverslips, storage containers and a full line of histology supplies and equipment.

Email *isales@tedpella.com* Web *www.tedpella.com*

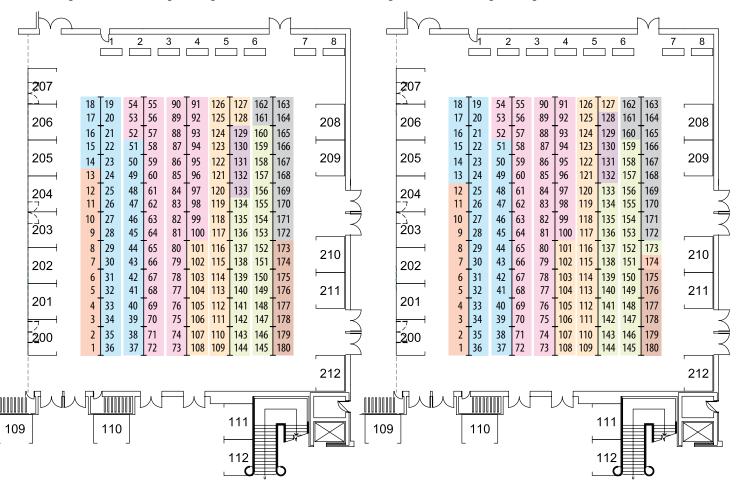
TMS International

Booth 202

TMSi is spezialized in high quality recording and analysis of a large variety of (electro)physiological parameters. We use unique amplifier technology, especially suited for use in "hostile" measurement environments, such as very noisy surroundings, in demanding ambulatory applications with potential movement artifacts or in cases with very poor electrode impedances. Our systems currently range from 2 to 72 channels.

Email caroline.klumper@tmsi.com Web www.tmsi.com

Tucker-Davis Technologies Booth 208


Tucker-Davis Technologies (TDT) provides products for basic and applied research in the neurophysiology, hearing, and speech sciences as well as for general data acquisition applications. We offer a complete line of modular DSP-based data acquisition and stimulus generation systems. At TDT, we work closely to achieve our common goal: to supply you with the highest quality, most up-to-date technology available at an affordable price. We believe we can best meet this goal when all areas of our business work together in a cooperative and collaborative environment.

Email *rrojas@tdt.com* Web *www.tdt.com*

POSTERS FLOOR PLANS

Bayshore Ballroom DEF

Day 1 – Monday, May 25

Day 2 – Tuesday, May 26

- A Development
- B Neural Excitability, Synapses & Glia: Cellular Mechanisms
- C Disorders of the Nervous System
- D Sensory & Motor Systems
- E Homeostatic & Neuroendocrine Systems
- F Cognition & Behaviour
- G Novel Methods & Technology Development
- IBRO International Brain Research Organisation

Proteinopathies of Neurodegenerative Disorders July 12-14, 2015, Charlottetown, PEI

NeuroConX 2015 connects innovative research with key pharmaceutical companies, business leaders and investors.

Featuring:

- Clinical research breakthroughs
- CNS-focused business strategies
- Investing in CNS presentations
- One-to-one partnering program & networking
- Island hospitality & local culinary delights

Register today!

www.neuroconx.com

Presented by:

A new open-access online journal from the Society for Neuroscience

Submit your research, replication studies, and negative results.

go.sfn.org/eneurocan

Did you access our app at the 2014 meeting in Montreal? If so, simply open the Podium App and select the 9th Annual Meeting App.

Download the official CAN Mobile App!

Building on the well-received first edition of our app, we are excited to bring you the 2015 edition of the official CAN Mobile Meeting App! The app is, once again, available as a free download for iPhone, Android, Blackberry and all tablets, and in a web version for all other web browser-enabled smartphones. Maximize your time and experience with the CAN Meeting – scan the QR code to access the app.

The CAN app allows you to:

- View all conference information (sessions, abstracts, speakers, exhibitors, maps, attendee profiles, etc.) on your mobile device
- Build a personalized schedule and access any session handouts
- Find information quickly with the search feature
- Opt into messaging with other attendees
- Receive important conference-related notifications and updates
- Take notes on your mobile device during specific sessions with the ability to extract the information later
- Browse local restaurants and attractions
- And much more...

The Canadian Association for Neuroscience presents

9th Annual Canadian Neuroscience Meeting 2015

Thanks to our Sponsors, Supporters and Donors

Platinum Sponsor

Gold Sponsors

Silver Sponsors

Bronze Sponsors

University of Victoria

Medical Sciences

TUCKER-DAVIS TECHNOLOGIES

Neurosciences & Mental Health

