News

SickKids researchers discover precise molecular mechanisms that can influence memory

Zhengping Jia

Zhengping Jia

Learning and memory are crucial parts of human cognition, yet the biological processes that govern how we learn and store different types of memories are poorly understood. Although a cellular process called synaptic plasticity has long been thought to contribute to learning and memory, many of the neural mechanisms behind synaptic plasticity have remained unclear.

In a recently published study entitled The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning, researchers from The Hospital for Sick Children (SickKids) have discovered the precise neuronal mechanisms that can regulate synaptic plasticity to influence distinct forms of memory. We sat down with Dr. Zhengping Jia, a Senior Scientist in the Neurosciences & Mental Health Program at SickKids who led the study, published online in Nature Neuroscience.

uOBMRI researchers open new doors for Parkinson’s drug therapies

David Park

David Park

Dr. David Park has spent countless hours exploring how deactivating a gene impacts the way a cell handles the very nutrients it needs for its own survival and proper function. To Park and his research team, it’s an essential piece of the puzzle that is Parkinson’s disease.

Parkinson’s affects 10 million people worldwide, causing a degeneration of the body’s nerve cells and a progressive loss of motor control.

Neuroscientists link memory fundamentals with Alzheimer’s disease in promising study

Paul Frankland

Paul Frankland

Deteriorating memory function is a scary, life changing symptom associated with Alzheimer’s disease (AD) – a neurodegenerative disease exhibited by cognitive declines such as speech, behaviour and thinking processes. Even though it is the most common form of dementia and the prevalence is continuously rising, there is no cure. While there are medications to help with symptoms, the disease ultimately results in mortality.

Child abuse affects brain wiring

Gustavo Turecki

Gustavo Turecki

Researchers from the McGill Group for Suicide Studies, based at the Douglas Mental Health University Institute and McGill University’s Department of Psychiatry, have just published research in the American Journal of Psychiatry that suggests that the long-lasting effects of traumatic childhood experiences, like severe abuse, may be due to an impaired structure and functioning of cells in the anterior cingulate cortex. This is a part of the brain which plays an important role in the regulation of emotions and mood.

The two faces of depression

Benoit Labonté

Benoit Labonté

Major depression affects the expression of genes in the brains of women and men differently

Major depression presents itself quite differently in women and men, and this dimorphism would have genomic foundations, suggests a study that has just been published in Nature Medicine. According to the first author of this study, Benoit Labonté of the CERVO Brain Research Centre at Université Laval, these differences are such that the search for new antidepressants would benefit from targeting mechanisms specific to each sex.

Pinpointing the origins of autism

Abnormalities shown to first appear in brain networks involved in sensory processing

The origins of autism remain mysterious. What areas of the brain are involved, and when do the first signs appear? New findings published in Biological Psychiatry bring us closer to understanding the pathology of autism, and the point at which it begins to take shape in the human brain. Such knowledge will allow earlier interventions in the future and better outcomes for autistic children.

Could olfactory loss point to Alzheimer’s disease?

John Breitner

John Breitner

Promising finding suggests odour identification tests may help scientists track the evolution of the disease in persons at risk

By the time you start losing your memory, it’s almost too late. That’s because the damage to your brain associated with Alzheimer’s disease (AD) may already have been going on for as long as twenty years. Which is why there is so much scientific interest in finding ways to detect the presence of the disease early on. Scientists now believe that simple odour identification tests may help track the progression of the disease before symptoms actually appear, particularly among those at risk.

Muscle function regained in CRISPR-treated mice with congenital muscular dystrophy, SickKids study finds

Ronald Cohn

Ronald Cohn

Scientists at The Hospital for Sick Children (SickKids) have used the gene-editing tool CRISPR to correct a disease-causing mutation in mice with a form of congenital muscular dystrophy, MDC1A. The findings, published in the July 17 online edition of Nature Medicine, show significant improvement in muscle strength and function among the mice treated with CRISPR, with no remaining signs of paralysis.

MDC1A is a rare neuromuscular disease affecting one in 150,000 worldwide. It is caused by a mutation in a gene called laminin alpha 2 and is characterized at birth by muscle weakness and low muscle tone, as well as brain abnormalities. Babies born with this condition eventually lose all muscle function and live an average of 30 years.

Brains are more plastic than we thought

Chris Pack

Chris Pack

Researchers train brains to use different regions for same task

Practice might not always make perfect, but it’s essential for learning a sport or a musical instrument. It’s also the basis of brain training, an approach that holds potential as a non-invasive therapy to overcome disabilities caused by neurological disease or trauma.

Research at the Montreal Neurological Institute and Hospital of McGill University (The Neuro) has shown just how adaptive the brain can be, knowledge that could one day be applied to recovery from conditions such as stroke.

Making information meaningful leads to better memory

Jed Meltzer

Jed Meltzer

When trying to memorize information, it is better to relate it to something meaningful rather than repeat it again and again to make it stick, according to a recent Baycrest study published in NeuroImage.

“When we are learning new information, our brain has two different ways to remember the material for a short period of time, either by mentally rehearsing the sounds of the words or thinking about the meaning of the words,” says Dr. Jed Meltzer

Brain area involved in addiction activated earlier than previously thought in recreational cocaine users

Marco Leyton

Marco Leyton

Non-dependent users also experience dopamine release in response to drug cues

Even among non-dependent cocaine users, cues associated with consumption of the drug lead to dopamine release in an area of the brain thought to promote compulsive use, according to researchers at McGill University.

The findings, published in Scientific Reports, suggest that people who consider themselves recreational users could be further along the road to addiction than they might have realized.

Common acne medication offers new treatment for multiple sclerosis – Study results offer safe and affordable treatment option

Luanne Metz and  V. Wee Yong

Luanne Metz and V. Wee Yong

A Canadian clinical trial led by researchers at the University of Calgary’s Hotchkiss Brain Institute (HBI), at the Cumming School of Medicine (CSM), shows that minocycline, a common acne medication, can slow the progress of relapsing-remitting multiple sclerosis (MS) in people who have recently experienced their first symptoms.

In addition to being an unexpected discovery — an acne drug benefitting a neurological disorder — the discovery is significant as it offers a safe and affordable treatment option for those with early onset MS. This discovery could impact thousands of newly diagnosed MS patients around the world.

Researchers identify specific neurons that distinguish between reality and imagination

Julio Martinez-Trujillo

Julio Martinez-Trujillo

New Western University research shows that neurons in the part of the brain found to be abnormal in psychosis are also important in helping people distinguish between reality and imagination.

The researchers, Dr. Julio Martinez-Trujillo, principal investigator and professor at Western University’s Schulich School of Medicine & Dentistry and Dr. Diego Mendoza-Halliday, postdoctoral researcher at M.I.T., investigated how the brain codes visual information in reality versus abstract information in our working memory and how those differences are distributed across neurons in the lateral prefrontal cortex region of the brain. The results were published today in Nature Communications (https://www.nature.com/articles/ncomms15471)

Researchers identify a new factor essential for the healthy development of a child’s brain

Freda Miller

Freda Miller

Proper brain development is a crucial step in a child’s health. An important part of brain development is the creation of white matter, which enables different regions of the brain to rapidly and effectively “talk” to one another.

In a new study published in Neuron, a team of researchers led by Dr. Freda Miller and Dr. David Kaplan has revealed how oligodendrocytes, which are crucial for proper brain function and that are damaged or altered in conditions such as Multiple Sclerosis, autism and concussions, are formed during development.

Molecule shown to repair damaged axons

Alyson Fournier

Discovery could be key to treating brain and spinal cord injury

A foray into plant biology led one researcher to discover that a natural molecule can repair axons, the thread-like projections that carry electrical signals between cells. Axonal damage is the major culprit underlying disability in conditions such as spinal cord injury and stroke.

Andrew Kaplan, a PhD candidate at the Montreal Neurological Institute and Hospital of McGill University, was looking for a pharmacological approach to axon regeneration, with a focus on 14-3-3, a family of proteins with neuroprotective functions that have been under investigation in the laboratory of Dr. Alyson Fournier, professor of neurology and neurosurgery and senior author on the study.

Second study from UBC shows “liberation therapy” fails to treat multiple sclerosis

Anthony Traboulsee

Anthony Traboulsee

Opening up narrowed veins from the brain and spinal cord is not effective in treating multiple sclerosis (MS), according to a study led by the University of British Columbia and Vancouver Coastal Health.

The conclusions about so-called “liberation therapy,” which thousands of people with MS have undergone since 2009, represent the most definitive debunking of the claim that MS patients could achieve dramatic improvements from a one-time medical procedure.

Largest international study of its kind finds new schizophrenia risk genes

Stephen Scherer

Stephen Scherer

Results of the International Psychiatric Genomics Consortium unveiled

TORONTO – Canadian and international scientists have uncovered six new schizophrenia risk genes in the largest study of its kind. The results of the international Psychiatric Genomics Consortium CNV working group are published in the Nov. 21 advance online edition of Nature Genetics, and further support the important role genes play in susceptibility to schizophrenia, and may be helpful in early diagnosis.

UBC scientists create a mouse that resists cocaine’s lure

Shernaz BamjiScientists at the University of British Columbia have genetically engineered a mouse that does not become addicted to cocaine, adding to the evidence that habitual drug use is more a matter of genetics and biochemistry than just poor judgment.

The mice they created had higher levels of a protein called cadherin, which helps bind cells together. In the brain, cadherin helps strengthen synapses between neurons – the gaps that electrical impulses must traverse to bring about any action or function controlled by the brain, whether it’s breathing, walking, learning a new task or recalling a memory.

An eye-catching result

Brian White

Brian White

Research determines how the brain recognizes what’s important at first glance.

Researchers at the Centre for Neuroscience Studies (CNS) at Queen’s University have discovered that a region of the brain – the superior colliculus – contains a mechanism responsible for interpreting how visual input from a scene determines where we look. This mechanism, known as a visual salience map, allows the brain to quickly identify and act on the most important information in the visual field, and is a basic mechanism for our everyday vision.

Lack of joy from music linked to brain disconnection

Dr. Robert Zatorre

Dr. Robert Zatorre

Have you ever met someone who just wasn’t into music? They may have a condition called specific musical anhedonia, which affects three-to-five per cent of the population.

Researchers at the University of Barcelona and the Montreal Neurological Institute and Hospital of McGill University have discovered that people with this condition showed reduced functional connectivity between cortical regions responsible for processing sound and subcortical regions related to reward.

Breakthrough in MS treatment

Amit Bar-Or

Amit Bar-Or

Drug shown to reduce new attacks/symptom progression in some patients

In separate clinical trials, a drug called ocrelizumab has been shown to reduce new attacks in patients with relapsing remitting multiple sclerosis (MS), and new symptom progression in primary progressive MS.

Three studies conducted by an international team of researchers, which included Amit Bar-Or and Douglas Arnold from the Montreal Neurological Institute and Hospital of McGill University, have discovered that ocrelizumab can significantly reduce new attacks in patients with relapsing MS, as well as slow the progression of symptoms caused by primary progressive MS.

An inherited form of intellectual disability, due to mutations in the SYNGAP1 gene, impairs connection of inhibitory neurons

Graziella Di Cristo and Jacques Michaud

Graziella Di Cristo and Jacques Michaud

Intellectual disability is characterized by significant impairment of cognitive and adaptive functions and affects 1-3 in 100 individuals worldwide. A few years ago, scientists at CHU Ste.Justine reported for the first time that genetic mutations in the gene SYNGAP1 cause a form of intellectual disability, which is often associated with autism spectrum disorders and epilepsy. Since then, DNA sequencing of SYNGAP1 in several groups of individuals with intellectual disability in Canada, the US and Europe has revealed that pathogenic mutations in SYNGAP1 are one of the most common cause of genetic intellectual disability.